File size: 14,433 Bytes
ef689dc
be84f49
ef689dc
f6d08a7
 
be84f49
f6d08a7
 
be84f49
f6d08a7
 
 
 
 
 
 
 
 
be84f49
f6d08a7
 
 
 
 
ef689dc
f6d08a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be84f49
f6d08a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
913cbef
f6d08a7
 
 
 
 
 
 
 
 
 
 
 
 
 
a609809
35840fb
9368837
 
 
 
 
 
 
 
 
 
f6d08a7
 
 
 
 
 
bfb9e64
 
 
f6d08a7
bfb9e64
 
 
 
 
f6d08a7
 
 
9368837
 
 
f6d08a7
 
 
 
 
 
 
 
bfb9e64
 
 
 
a76fb9a
bfb9e64
 
a4fdd27
bfb9e64
 
 
 
a4fdd27
bfb9e64
 
 
 
93514f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6d08a7
a4fdd27
 
 
 
 
f6d08a7
 
 
 
 
 
 
 
 
 
 
a4fdd27
 
f6d08a7
a4fdd27
f6d08a7
 
 
 
 
a4fdd27
93514f5
a4fdd27
 
 
 
a609809
a4fdd27
 
 
 
 
 
 
 
93514f5
bc0d3b0
a4fdd27
 
 
 
a609809
a4fdd27
 
 
 
 
 
 
 
18dbd38
 
a4fdd27
18dbd38
a4fdd27
a609809
a4fdd27
 
 
 
 
 
 
1cede21
a4fdd27
 
1cede21
 
 
 
 
a609809
1cede21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7e97e7
 
 
 
1cede21
 
a4fdd27
a609809
a4fdd27
 
 
 
 
 
 
 
 
2ca7cab
bc0d3b0
2ca7cab
 
93514f5
 
 
2ca7cab
a4fdd27
93514f5
a4fdd27
 
93514f5
a4fdd27
93514f5
a4fdd27
93514f5
a4fdd27
93514f5
 
cad6dbf
 
18dbd38
cad6dbf
 
 
 
a4fdd27
93514f5
cad6dbf
 
 
 
 
 
a4fdd27
139321b
a4fdd27
93514f5
a4fdd27
3454095
 
 
a4fdd27
93514f5
 
 
 
 
a4fdd27
93514f5
a4fdd27
 
 
54cedbc
a4fdd27
 
 
 
 
93514f5
 
a4fdd27
 
93514f5
 
f6d08a7
a4fdd27
 
 
 
 
 
93514f5
 
f6d08a7
a4fdd27
 
 
 
 
 
 
93514f5
 
 
 
 
 
a4fdd27
93514f5
a4fdd27
f6d08a7
a4fdd27
f6d08a7
a4fdd27
 
 
 
 
2ca7cab
f6d08a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be84f49
 
f6d08a7
 
be84f49
f6d08a7
 
 
 
 
 
 
 
 
2ca7cab
f6d08a7
a4fdd27
bc0d3b0
a4fdd27
 
f6d08a7
2ca7cab
f6d08a7
 
 
bc0d3b0
f6d08a7
 
 
 
a4fdd27
 
 
f6d08a7
a4fdd27
f6d08a7
2ca7cab
 
f6d08a7
 
 
 
62d4565
f6d08a7
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
#============================================================================================
# https://huggingface.co/spaces/projectlosangeles/Orpheus-MIDI-Loops-Mixer
#============================================================================================

print('=' * 70)
print('Orpheus MIDI Loops Mixer Gradio App')

print('=' * 70)
print('Loading core Orpheus MIDI Loops Mixer modules...')

import os
import copy

import time as reqtime
import datetime
from pytz import timezone

print('=' * 70)
print('Loading main Orpheus MIDI Loops Mixer modules...')

os.environ['USE_FLASH_ATTENTION'] = '1'

import torch

torch.set_float32_matmul_precision('high')
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
torch.backends.cuda.enable_flash_sdp(True)

from huggingface_hub import hf_hub_download

import TMIDIX

from midi_to_colab_audio import midi_to_colab_audio

from x_transformer_2_3_1 import *

import random

import tqdm

print('=' * 70)
print('Loading aux Orpheus MIDI Loops Mixer modules...')

import matplotlib.pyplot as plt

import gradio as gr
import spaces

print('=' * 70)
print('PyTorch version:', torch.__version__)
print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)

#==================================================================================

MODEL_CHECKPOINT = 'Orpheus_Bridge_Music_Transformer_Trained_Model_43450_steps_0.8334_loss_0.7629_acc.pth'

SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'

#==================================================================================

print('=' * 70)
print('Instantiating model...')

device_type = 'cuda'
dtype = 'bfloat16'

ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)

SEQ_LEN = 1668
PAD_IDX = 18819

model = TransformerWrapper(num_tokens = PAD_IDX+1,
                           max_seq_len = SEQ_LEN,
                           attn_layers = Decoder(dim = 2048,
                                                 depth = 8,
                                                 heads = 32,
                                                 rotary_pos_emb = True,
                                                 attn_flash = True
                                                 )
                           )

model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)

print('=' * 70)
print('Loading model checkpoint...')      

model_checkpoint = hf_hub_download(repo_id='asigalov61/Orpheus-Music-Transformer', 
                                   filename=MODEL_CHECKPOINT
                                  )

model.load_state_dict(torch.load(model_checkpoint, 
                                 map_location=device_type, 
                                 weights_only=True
                                )
                     )

model = torch.compile(model, mode='max-autotune')

model.to(device_type)
model.eval()

print('=' * 70)
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)

#==================================================================================

print('=' * 70)
print('Loading Orpheus MIDI Loops dataset...')

orpheus_loops_dataset_file = hf_hub_download(repo_id='asigalov61/Orpheus-Music-Transformer', 
                                             filename='orpheus_data/190191_Orpheus_MIDI_Loops_MP_Dataset_CC_BY_NC_SA.pickle'
                                            )

loops_data = TMIDIX.Tegridy_Any_Pickle_File_Reader(orpheus_loops_dataset_file)

print('=' * 70)
print('Done!')
print('=' * 70)
print('Loaded', len(loops_data), 'loops')
print('=' * 70)

#==================================================================================

def tokens_to_score(tokens, abs_time):

    song_f = []
    
    time = abs_time
    dur = 1
    vel = 90
    pitch = 60
    channel = 0
    patch = 0

    patches = [-1] * 16

    channels = [0] * 16
    channels[9] = 1

    for ss in tokens:

        if 0 <= ss < 256:

            time += ss * 16

        if 256 <= ss < 16768:

            patch = (ss-256) // 128

            if patch < 128:

                if patch not in patches:
                  if 0 in channels:
                      cha = channels.index(0)
                      channels[cha] = 1
                  else:
                      cha = 15

                  patches[cha] = patch
                  channel = patches.index(patch)
                else:
                  channel = patches.index(patch)

            if patch == 128:
                channel = 9

            pitch = (ss-256) % 128


        if 16768 <= ss < 18816:

            dur = ((ss-16768) // 8) * 16
            vel = (((ss-16768) % 8)+1) * 15

            song_f.append(['note', time, dur, channel, pitch, vel, patch])

    return song_f, time

#==================================================================================

@spaces.GPU
def Mix_MIDI_Loops(num_loops_to_mix,
                   use_one_loop,
                   model_temperature,
                   model_sampling_top_k
                  ):

    #===============================================================================

    print('=' * 70)
    print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    start_time = reqtime.time()
    print('=' * 70)

    print('=' * 70)
    print('Requested settings:')
    print('=' * 70)
    print('Num loops to mix:', num_loops_to_mix)
    print('Use one loop:', use_one_loop)
    print('Model temperature:', model_temperature)
    print('Model top k:', model_sampling_top_k)
   
    print('=' * 70)

    #==================================================================

    print('Generating...')

    song = []
    song_indexes = []
    song_titles = []
    song_parts = []
    
    while len(song) <= 512:
        lidx = random.randint(0, len(loops_data)-1)
        song = loops_data[lidx][1]
    
    song_indexes.append(lidx)
    song_titles.append(loops_data[lidx][0])
    song_parts.append(loops_data[lidx][1])
    
    for i in tqdm.tqdm(range(num_loops_to_mix-1)):

        left_chunk = [1] + loops_data[lidx][1][2:]
    
        if use_one_loop:
            right_chunk = [1] + loops_data[lidx][1][2:]
            
        else:
            right_chunk = []
    
            ridx = [-1]
            rlen = -1
    
            while ridx and rlen <= 512:
                rlen = len(loops_data[ridx[0]][1])
                ridx = [l for l in loops_data[lidx][2] if l not in song_indexes]   

            if ridx:
                ridx = ridx[0]
                right_chunk = [1] + loops_data[ridx][1][2:]
                    
                lidx = ridx
                song_titles.append(loops_data[lidx][0])
                song_indexes.append(lidx)
    
            else:
                break
    
        seq = [18815] + left_chunk[-512:] + [18816] + right_chunk[:512] + [18817] + left_chunk[-64:]
    
        x = torch.LongTensor(seq).cuda()

        y_val = []
        rcount = 0

        while y_val != right_chunk[:64]:
        
            with ctx:
                out = model.generate(x,
                                     576,
                                     temperature=model_temperature,
                                     filter_logits_fn=top_k,
                                     filter_kwargs={'k': model_sampling_top_k},
                                     eos_token=18818,
                                     return_prime=False,
                                     verbose=False)
            
            y = out.tolist()
    
            y_val = y[-64:]

            if y_val != right_chunk[:64]:
                rcount += 1
                print('Regenerating attempt #', rcount)
                
                if rcount == 3:
                    break
                    
        song = song + y[:-64] + right_chunk
        song_parts.append(y[:-64])
        song_parts.append(right_chunk)
        
    #==================================================================
   
    print('=' * 70)
    print('Done!')
    print('=' * 70)
    
    #===============================================================================
    
    print('Rendering results...')

    used_loops_titles = 'Composition used ' + str(len(song_titles)) + ' loops from the following titles:\n\n'

    for i, t in enumerate(song_titles):
        used_loops_titles += 'Loop #' + str(i+1) + ': ' + str(t) + '\n'

    #===============================================================================
        
    print('=' * 70)
    print('Sample INTs', song[:15])
    print('=' * 70)

    output_score = []
    
    abs_time = 1000
    
    for i, part in enumerate(song_parts):
    
        if i == 0:
            part = part[1:]

        if not use_one_loop:
            part_idx = song_indexes[i // 2]

        else:
            part_idx = song_indexes[0]
            
    
        if i % 2 == 0:

            if not use_one_loop:
                part_title = song_titles[i // 2]

            else:
                part_title = song_titles[0]
    
            output_score.append(['text_event', abs_time + (part[0] * 16), 'Loop #' + str((i // 2)+1) + ' / IDX #' + str(part_idx) + ' / ' + part_title])
    
        else:
    
            tidx = [i for i in range(20) if part[i] < 256][0]
    
            output_score.append(['text_event', abs_time + (part[tidx] * 16), 'AI-generated bridge'])
    
        score, abs_time= tokens_to_score(part, abs_time)
        
        output_score.extend(score)

    #===============================================================================

    patched_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(output_score)

    fn1 = "Orpheus-MIDI-Loops-Mixer-Composition"
    
    detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(patched_score,
                                                              output_signature = 'Orpheus MIDI Loops Mixer',
                                                              output_file_name = fn1,
                                                              track_name='Project Los Angeles',
                                                              list_of_MIDI_patches=patches
                                                              )

    #===============================================================================
    
    new_fn = fn1+'.mid'

    #===============================================================================            
    
    audio = midi_to_colab_audio(new_fn, 
                        soundfont_path=SOUDFONT_PATH,
                        sample_rate=16000,
                        volume_scale=10,
                        output_for_gradio=True
                        )

    #===============================================================================
    
    print('Done!')
    print('=' * 70)

    #========================================================

    output_midi = str(new_fn)
    output_audio = (16000, audio)
    output_plot = TMIDIX.plot_ms_SONG(patched_score, 
                                      plot_title=output_midi, 
                                      return_plt=True
                                     )

    #===============================================================================

    print(used_loops_titles)
    print('=' * 70) 
    
    #========================================================

    print('-' * 70)
    print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('-' * 70)
    print('Req execution time:', (reqtime.time() - start_time), 'sec')

    return used_loops_titles, output_audio, output_plot, output_midi
    
#==================================================================================

PDT = timezone('US/Pacific')

print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)

#==================================================================================

with gr.Blocks() as demo:

    #==================================================================================

    gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Orpheus MIDI Loops Mixer</h1>")
    gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Mix several MIDI loops into one composition by bridging</h1>")
    gr.HTML("""            
            <p> 
                <a href="https://huggingface.co/spaces/projectlosangeles/Orpheus-MIDI-Loops-Mixer?duplicate=true">
                    <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face">
                </a>
            </p>
            
            for faster execution and endless generation!
            """)
    
    #==================================================================================
    
    gr.Markdown("## Generation options")
    
    num_loops_to_mix = gr.Slider(2, 10, value=5, step=1, label="Number of loops to mix")
    use_one_loop = gr.Checkbox(value=False, label="Use only one randomly selected loop")
    model_temperature = gr.Slider(0.1, 1, value=1.0, step=0.01, label="Model temperature")
    model_sampling_top_k = gr.Slider(1, 100, value=5, step=1, label="Model sampling top k value")
    
    generate_btn = gr.Button("Mix Loops", variant="primary")

    gr.Markdown("## Generation results")

    used_loops_titles = gr.Textbox(label="MIDI loops titles")
    output_audio = gr.Audio(label="MIDI audio", format="wav", elem_id="midi_audio")
    output_plot = gr.Plot(label="MIDI score plot")
    output_midi = gr.File(label="MIDI file", file_types=[".mid"])

    generate_btn.click(Mix_MIDI_Loops, 
                       [num_loops_to_mix,
                        use_one_loop,
                        model_temperature,
                        model_sampling_top_k
                       ], 
                       [used_loops_titles,
                        output_audio,
                        output_plot,
                        output_midi                          
                       ]
                      )
    
#==================================================================================

demo.launch()

#==================================================================================