Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,433 Bytes
ef689dc be84f49 ef689dc f6d08a7 be84f49 f6d08a7 be84f49 f6d08a7 be84f49 f6d08a7 ef689dc f6d08a7 be84f49 f6d08a7 913cbef f6d08a7 a609809 35840fb 9368837 f6d08a7 bfb9e64 f6d08a7 bfb9e64 f6d08a7 9368837 f6d08a7 bfb9e64 a76fb9a bfb9e64 a4fdd27 bfb9e64 a4fdd27 bfb9e64 93514f5 f6d08a7 a4fdd27 f6d08a7 a4fdd27 f6d08a7 a4fdd27 f6d08a7 a4fdd27 93514f5 a4fdd27 a609809 a4fdd27 93514f5 bc0d3b0 a4fdd27 a609809 a4fdd27 18dbd38 a4fdd27 18dbd38 a4fdd27 a609809 a4fdd27 1cede21 a4fdd27 1cede21 a609809 1cede21 b7e97e7 1cede21 a4fdd27 a609809 a4fdd27 2ca7cab bc0d3b0 2ca7cab 93514f5 2ca7cab a4fdd27 93514f5 a4fdd27 93514f5 a4fdd27 93514f5 a4fdd27 93514f5 a4fdd27 93514f5 cad6dbf 18dbd38 cad6dbf a4fdd27 93514f5 cad6dbf a4fdd27 139321b a4fdd27 93514f5 a4fdd27 3454095 a4fdd27 93514f5 a4fdd27 93514f5 a4fdd27 54cedbc a4fdd27 93514f5 a4fdd27 93514f5 f6d08a7 a4fdd27 93514f5 f6d08a7 a4fdd27 93514f5 a4fdd27 93514f5 a4fdd27 f6d08a7 a4fdd27 f6d08a7 a4fdd27 2ca7cab f6d08a7 be84f49 f6d08a7 be84f49 f6d08a7 2ca7cab f6d08a7 a4fdd27 bc0d3b0 a4fdd27 f6d08a7 2ca7cab f6d08a7 bc0d3b0 f6d08a7 a4fdd27 f6d08a7 a4fdd27 f6d08a7 2ca7cab f6d08a7 62d4565 f6d08a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
#============================================================================================
# https://huggingface.co/spaces/projectlosangeles/Orpheus-MIDI-Loops-Mixer
#============================================================================================
print('=' * 70)
print('Orpheus MIDI Loops Mixer Gradio App')
print('=' * 70)
print('Loading core Orpheus MIDI Loops Mixer modules...')
import os
import copy
import time as reqtime
import datetime
from pytz import timezone
print('=' * 70)
print('Loading main Orpheus MIDI Loops Mixer modules...')
os.environ['USE_FLASH_ATTENTION'] = '1'
import torch
torch.set_float32_matmul_precision('high')
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
torch.backends.cuda.enable_flash_sdp(True)
from huggingface_hub import hf_hub_download
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
from x_transformer_2_3_1 import *
import random
import tqdm
print('=' * 70)
print('Loading aux Orpheus MIDI Loops Mixer modules...')
import matplotlib.pyplot as plt
import gradio as gr
import spaces
print('=' * 70)
print('PyTorch version:', torch.__version__)
print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)
#==================================================================================
MODEL_CHECKPOINT = 'Orpheus_Bridge_Music_Transformer_Trained_Model_43450_steps_0.8334_loss_0.7629_acc.pth'
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'
#==================================================================================
print('=' * 70)
print('Instantiating model...')
device_type = 'cuda'
dtype = 'bfloat16'
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
SEQ_LEN = 1668
PAD_IDX = 18819
model = TransformerWrapper(num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 2048,
depth = 8,
heads = 32,
rotary_pos_emb = True,
attn_flash = True
)
)
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
print('=' * 70)
print('Loading model checkpoint...')
model_checkpoint = hf_hub_download(repo_id='asigalov61/Orpheus-Music-Transformer',
filename=MODEL_CHECKPOINT
)
model.load_state_dict(torch.load(model_checkpoint,
map_location=device_type,
weights_only=True
)
)
model = torch.compile(model, mode='max-autotune')
model.to(device_type)
model.eval()
print('=' * 70)
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)
#==================================================================================
print('=' * 70)
print('Loading Orpheus MIDI Loops dataset...')
orpheus_loops_dataset_file = hf_hub_download(repo_id='asigalov61/Orpheus-Music-Transformer',
filename='orpheus_data/190191_Orpheus_MIDI_Loops_MP_Dataset_CC_BY_NC_SA.pickle'
)
loops_data = TMIDIX.Tegridy_Any_Pickle_File_Reader(orpheus_loops_dataset_file)
print('=' * 70)
print('Done!')
print('=' * 70)
print('Loaded', len(loops_data), 'loops')
print('=' * 70)
#==================================================================================
def tokens_to_score(tokens, abs_time):
song_f = []
time = abs_time
dur = 1
vel = 90
pitch = 60
channel = 0
patch = 0
patches = [-1] * 16
channels = [0] * 16
channels[9] = 1
for ss in tokens:
if 0 <= ss < 256:
time += ss * 16
if 256 <= ss < 16768:
patch = (ss-256) // 128
if patch < 128:
if patch not in patches:
if 0 in channels:
cha = channels.index(0)
channels[cha] = 1
else:
cha = 15
patches[cha] = patch
channel = patches.index(patch)
else:
channel = patches.index(patch)
if patch == 128:
channel = 9
pitch = (ss-256) % 128
if 16768 <= ss < 18816:
dur = ((ss-16768) // 8) * 16
vel = (((ss-16768) % 8)+1) * 15
song_f.append(['note', time, dur, channel, pitch, vel, patch])
return song_f, time
#==================================================================================
@spaces.GPU
def Mix_MIDI_Loops(num_loops_to_mix,
use_one_loop,
model_temperature,
model_sampling_top_k
):
#===============================================================================
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
print('=' * 70)
print('Requested settings:')
print('=' * 70)
print('Num loops to mix:', num_loops_to_mix)
print('Use one loop:', use_one_loop)
print('Model temperature:', model_temperature)
print('Model top k:', model_sampling_top_k)
print('=' * 70)
#==================================================================
print('Generating...')
song = []
song_indexes = []
song_titles = []
song_parts = []
while len(song) <= 512:
lidx = random.randint(0, len(loops_data)-1)
song = loops_data[lidx][1]
song_indexes.append(lidx)
song_titles.append(loops_data[lidx][0])
song_parts.append(loops_data[lidx][1])
for i in tqdm.tqdm(range(num_loops_to_mix-1)):
left_chunk = [1] + loops_data[lidx][1][2:]
if use_one_loop:
right_chunk = [1] + loops_data[lidx][1][2:]
else:
right_chunk = []
ridx = [-1]
rlen = -1
while ridx and rlen <= 512:
rlen = len(loops_data[ridx[0]][1])
ridx = [l for l in loops_data[lidx][2] if l not in song_indexes]
if ridx:
ridx = ridx[0]
right_chunk = [1] + loops_data[ridx][1][2:]
lidx = ridx
song_titles.append(loops_data[lidx][0])
song_indexes.append(lidx)
else:
break
seq = [18815] + left_chunk[-512:] + [18816] + right_chunk[:512] + [18817] + left_chunk[-64:]
x = torch.LongTensor(seq).cuda()
y_val = []
rcount = 0
while y_val != right_chunk[:64]:
with ctx:
out = model.generate(x,
576,
temperature=model_temperature,
filter_logits_fn=top_k,
filter_kwargs={'k': model_sampling_top_k},
eos_token=18818,
return_prime=False,
verbose=False)
y = out.tolist()
y_val = y[-64:]
if y_val != right_chunk[:64]:
rcount += 1
print('Regenerating attempt #', rcount)
if rcount == 3:
break
song = song + y[:-64] + right_chunk
song_parts.append(y[:-64])
song_parts.append(right_chunk)
#==================================================================
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
used_loops_titles = 'Composition used ' + str(len(song_titles)) + ' loops from the following titles:\n\n'
for i, t in enumerate(song_titles):
used_loops_titles += 'Loop #' + str(i+1) + ': ' + str(t) + '\n'
#===============================================================================
print('=' * 70)
print('Sample INTs', song[:15])
print('=' * 70)
output_score = []
abs_time = 1000
for i, part in enumerate(song_parts):
if i == 0:
part = part[1:]
if not use_one_loop:
part_idx = song_indexes[i // 2]
else:
part_idx = song_indexes[0]
if i % 2 == 0:
if not use_one_loop:
part_title = song_titles[i // 2]
else:
part_title = song_titles[0]
output_score.append(['text_event', abs_time + (part[0] * 16), 'Loop #' + str((i // 2)+1) + ' / IDX #' + str(part_idx) + ' / ' + part_title])
else:
tidx = [i for i in range(20) if part[i] < 256][0]
output_score.append(['text_event', abs_time + (part[tidx] * 16), 'AI-generated bridge'])
score, abs_time= tokens_to_score(part, abs_time)
output_score.extend(score)
#===============================================================================
patched_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(output_score)
fn1 = "Orpheus-MIDI-Loops-Mixer-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(patched_score,
output_signature = 'Orpheus MIDI Loops Mixer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
#===============================================================================
new_fn = fn1+'.mid'
#===============================================================================
audio = midi_to_colab_audio(new_fn,
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
#===============================================================================
print('Done!')
print('=' * 70)
#========================================================
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(patched_score,
plot_title=output_midi,
return_plt=True
)
#===============================================================================
print(used_loops_titles)
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return used_loops_titles, output_audio, output_plot, output_midi
#==================================================================================
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
#==================================================================================
with gr.Blocks() as demo:
#==================================================================================
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Orpheus MIDI Loops Mixer</h1>")
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Mix several MIDI loops into one composition by bridging</h1>")
gr.HTML("""
<p>
<a href="https://huggingface.co/spaces/projectlosangeles/Orpheus-MIDI-Loops-Mixer?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face">
</a>
</p>
for faster execution and endless generation!
""")
#==================================================================================
gr.Markdown("## Generation options")
num_loops_to_mix = gr.Slider(2, 10, value=5, step=1, label="Number of loops to mix")
use_one_loop = gr.Checkbox(value=False, label="Use only one randomly selected loop")
model_temperature = gr.Slider(0.1, 1, value=1.0, step=0.01, label="Model temperature")
model_sampling_top_k = gr.Slider(1, 100, value=5, step=1, label="Model sampling top k value")
generate_btn = gr.Button("Mix Loops", variant="primary")
gr.Markdown("## Generation results")
used_loops_titles = gr.Textbox(label="MIDI loops titles")
output_audio = gr.Audio(label="MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="MIDI score plot")
output_midi = gr.File(label="MIDI file", file_types=[".mid"])
generate_btn.click(Mix_MIDI_Loops,
[num_loops_to_mix,
use_one_loop,
model_temperature,
model_sampling_top_k
],
[used_loops_titles,
output_audio,
output_plot,
output_midi
]
)
#==================================================================================
demo.launch()
#================================================================================== |