Spaces:
Runtime error
Runtime error
| import torch | |
| import gradio as gr | |
| from peft import PeftModel | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import transformers | |
| adapters_name = "1littlecoder/mistral-7b-mj-finetuned" | |
| model_name = "bn22/Mistral-7B-Instruct-v0.1-sharded" | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name | |
| ) | |
| model = PeftModel.from_pretrained(model, adapters_name) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| tokenizer.bos_token_id = 1 | |
| stop_token_ids = [0] | |
| print(f"Successfully loaded the model {model_name} into memory") | |
| def remove_substring(original_string, substring_to_remove): | |
| # Replace the substring with an empty string | |
| result_string = original_string.replace(substring_to_remove, '') | |
| return result_string | |
| def list_to_string(input_list, delimiter=" "): | |
| """ | |
| Convert a list to a string, joining elements with the specified delimiter. | |
| :param input_list: The list to convert to a string. | |
| :param delimiter: The separator to use between elements (default is a space). | |
| :return: A string composed of list elements separated by the delimiter. | |
| """ | |
| return delimiter.join(map(str, input_list)) | |
| def format_prompt(message, history): | |
| prompt = "<s>" | |
| for user_prompt, bot_response in history: | |
| prompt += f"[INST] {user_prompt} [/INST]" | |
| prompt += f" {bot_response}</s> " | |
| prompt += f"[INST] {message} [/INST]" | |
| return prompt | |
| def generate( | |
| prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, | |
| ): | |
| temperature = float(temperature) | |
| if temperature < 1e-2: | |
| temperature = 1e-2 | |
| top_p = float(top_p) | |
| generate_kwargs = dict( | |
| temperature=temperature, | |
| max_new_tokens=max_new_tokens, | |
| top_p=top_p, | |
| repetition_penalty=repetition_penalty, | |
| do_sample=True, | |
| seed=42, | |
| ) | |
| formatted_prompt = format_prompt(prompt, history) | |
| encoded = tokenizer(formatted_prompt, return_tensors="pt", add_special_tokens=False) | |
| model_input = encoded | |
| generated_ids = model.generate(**model_input, max_new_tokens=200, do_sample=True) | |
| list_output = tokenizer.batch_decode(generated_ids) | |
| string_output = list_to_string(list_output) | |
| possible_output = remove_substring(string_output,formatted_prompt) | |
| return possible_output | |
| additional_inputs=[ | |
| gr.Slider( | |
| label="Temperature", | |
| value=0.9, | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.05, | |
| interactive=True, | |
| info="Higher values produce more diverse outputs", | |
| ), | |
| gr.Slider( | |
| label="Max new tokens", | |
| value=256, | |
| minimum=0, | |
| maximum=1048, | |
| step=64, | |
| interactive=True, | |
| info="The maximum numbers of new tokens", | |
| ), | |
| gr.Slider( | |
| label="Top-p (nucleus sampling)", | |
| value=0.90, | |
| minimum=0.0, | |
| maximum=1, | |
| step=0.05, | |
| interactive=True, | |
| info="Higher values sample more low-probability tokens", | |
| ), | |
| gr.Slider( | |
| label="Repetition penalty", | |
| value=1.2, | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| interactive=True, | |
| info="Penalize repeated tokens", | |
| ) | |
| ] | |
| css = """ | |
| #mkd { | |
| height: 500px; | |
| overflow: auto; | |
| border: 1px solid #ccc; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.HTML("<h1><center>Mistral 7B Instruct<h1><center>") | |
| gr.HTML("<h3><center>In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. π¬<h3><center>") | |
| gr.HTML("<h3><center>Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. π<h3><center>") | |
| gr.ChatInterface( | |
| generate, | |
| additional_inputs=additional_inputs, | |
| examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]] | |
| ) | |
| demo.queue(concurrency_count=75, max_size=100).launch(debug=True) | |