Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import spaces | |
| import gradio as gr | |
| import sys | |
| import platform | |
| import diffusers | |
| import transformers | |
| import psutil | |
| import os | |
| import time | |
| from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig | |
| from diffusers import ZImagePipeline, AutoModel | |
| from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig | |
| # ============================================================ | |
| # LOGGING BUFFER | |
| # ============================================================ | |
| LOGS = "" | |
| def log(msg): | |
| global LOGS | |
| print(msg) | |
| LOGS += msg + "\n" | |
| return msg | |
| # ============================================================ | |
| # SYSTEM METRICS β LIVE GPU + CPU MONITORING | |
| # ============================================================ | |
| def log_system_stats(tag=""): | |
| try: | |
| log(f"\n===== π₯ SYSTEM STATS {tag} =====") | |
| # ============= GPU STATS ============= | |
| if torch.cuda.is_available(): | |
| allocated = torch.cuda.memory_allocated(0) / 1e9 | |
| reserved = torch.cuda.memory_reserved(0) / 1e9 | |
| total = torch.cuda.get_device_properties(0).total_memory / 1e9 | |
| free = total - allocated | |
| log(f"π GPU Total : {total:.2f} GB") | |
| log(f"π GPU Allocated : {allocated:.2f} GB") | |
| log(f"π GPU Reserved : {reserved:.2f} GB") | |
| log(f"π GPU Free : {free:.2f} GB") | |
| # ============= CPU STATS ============ | |
| cpu = psutil.cpu_percent() | |
| ram_used = psutil.virtual_memory().used / 1e9 | |
| ram_total = psutil.virtual_memory().total / 1e9 | |
| log(f"π§ CPU Usage : {cpu}%") | |
| log(f"π§ RAM Used : {ram_used:.2f} GB / {ram_total:.2f} GB") | |
| except Exception as e: | |
| log(f"β οΈ Failed to log system stats: {e}") | |
| # ============================================================ | |
| # ENVIRONMENT INFO | |
| # ============================================================ | |
| log("===================================================") | |
| log("π Z-IMAGE-TURBO DEBUGGING + LIVE METRIC LOGGER") | |
| log("===================================================\n") | |
| log(f"π PYTHON VERSION : {sys.version.replace(chr(10),' ')}") | |
| log(f"π PLATFORM : {platform.platform()}") | |
| log(f"π TORCH VERSION : {torch.__version__}") | |
| log(f"π TRANSFORMERS VERSION : {transformers.__version__}") | |
| log(f"π DIFFUSERS VERSION : {diffusers.__version__}") | |
| log(f"π CUDA AVAILABLE : {torch.cuda.is_available()}") | |
| log_system_stats("AT STARTUP") | |
| if not torch.cuda.is_available(): | |
| raise RuntimeError("β CUDA Required") | |
| device = "cuda" | |
| gpu_id = 0 | |
| # ============================================================ | |
| # MODEL SETTINGS | |
| # ============================================================ | |
| model_cache = "./weights/" | |
| model_id = "Tongyi-MAI/Z-Image-Turbo" | |
| torch_dtype = torch.bfloat16 | |
| USE_CPU_OFFLOAD = False | |
| log("\n===================================================") | |
| log("π§ MODEL CONFIGURATION") | |
| log("===================================================") | |
| log(f"Model ID : {model_id}") | |
| log(f"Model Cache Directory : {model_cache}") | |
| log(f"torch_dtype : {torch_dtype}") | |
| log(f"USE_CPU_OFFLOAD : {USE_CPU_OFFLOAD}") | |
| log_system_stats("BEFORE TRANSFORMER LOAD") | |
| # ============================================================ | |
| # SAFE TRANSFORMER INSPECTION | |
| # ============================================================ | |
| def inspect_transformer(model, name): | |
| log(f"\nπ Inspecting {name}") | |
| try: | |
| candidates = ["transformer_blocks", "blocks", "layers", "encoder", "model"] | |
| blocks = None | |
| for attr in candidates: | |
| if hasattr(model, attr): | |
| blocks = getattr(model, attr) | |
| break | |
| if blocks is None: | |
| log(f"β οΈ No block structure found in {name}") | |
| return | |
| if hasattr(blocks, "__len__"): | |
| log(f"Total Blocks = {len(blocks)}") | |
| else: | |
| log("β οΈ Blocks exist but are not iterable") | |
| for i in range(min(10, len(blocks) if hasattr(blocks, "__len__") else 0)): | |
| log(f"Block {i} = {blocks[i].__class__.__name__}") | |
| except Exception as e: | |
| log(f"β οΈ Transformer inspect error: {e}") | |
| # ============================================================ | |
| # LOAD TRANSFORMER β WITH LIVE STATS | |
| # ============================================================ | |
| log("\n===================================================") | |
| log("π§ LOADING TRANSFORMER BLOCK") | |
| log("===================================================") | |
| log("π Logging memory before load:") | |
| log_system_stats("START TRANSFORMER LOAD") | |
| try: | |
| quant_cfg = DiffusersBitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_quant_type="nf4", | |
| bnb_4bit_compute_dtype=torch_dtype, | |
| bnb_4bit_use_double_quant=True, | |
| ) | |
| transformer = AutoModel.from_pretrained( | |
| model_id, | |
| cache_dir=model_cache, | |
| subfolder="transformer", | |
| quantization_config=quant_cfg, | |
| torch_dtype=torch_dtype, | |
| device_map=device, | |
| ) | |
| log("β Transformer loaded successfully.") | |
| except Exception as e: | |
| log(f"β Transformer load failed: {e}") | |
| transformer = None | |
| log_system_stats("AFTER TRANSFORMER LOAD") | |
| if transformer: | |
| inspect_transformer(transformer, "Transformer") | |
| # ============================================================ | |
| # LOAD TEXT ENCODER | |
| # ============================================================ | |
| log("\n===================================================") | |
| log("π§ LOADING TEXT ENCODER") | |
| log("===================================================") | |
| log_system_stats("START TEXT ENCODER LOAD") | |
| try: | |
| quant_cfg2 = TransformersBitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_quant_type="nf4", | |
| bnb_4bit_compute_dtype=torch_dtype, | |
| bnb_4bit_use_double_quant=True, | |
| ) | |
| text_encoder = AutoModel.from_pretrained( | |
| model_id, | |
| cache_dir=model_cache, | |
| subfolder="text_encoder", | |
| quantization_config=quant_cfg2, | |
| torch_dtype=torch_dtype, | |
| device_map=device, | |
| ) | |
| log("β Text encoder loaded successfully.") | |
| except Exception as e: | |
| log(f"β Text encoder load failed: {e}") | |
| text_encoder = None | |
| log_system_stats("AFTER TEXT ENCODER LOAD") | |
| if text_encoder: | |
| inspect_transformer(text_encoder, "Text Encoder") | |
| # ============================================================ | |
| # BUILD PIPELINE | |
| # ============================================================ | |
| log("\n===================================================") | |
| log("π§ BUILDING PIPELINE") | |
| log("===================================================") | |
| log_system_stats("START PIPELINE BUILD") | |
| try: | |
| pipe = ZImagePipeline.from_pretrained( | |
| model_id, | |
| transformer=transformer, | |
| text_encoder=text_encoder, | |
| torch_dtype=torch_dtype, | |
| ) | |
| pipe.to(device) | |
| log("β Pipeline built successfully.") | |
| except Exception as e: | |
| log(f"β Pipeline build failed: {e}") | |
| pipe = None | |
| log_system_stats("AFTER PIPELINE BUILD") | |
| # ============================================================ | |
| # INFERENCE | |
| # ============================================================ | |
| def generate_image(prompt, height, width, steps, seed): | |
| global LOGS | |
| LOGS = "" # reset logs | |
| log("===================================================") | |
| log("π¨ RUNNING INFERENCE") | |
| log("===================================================") | |
| log_system_stats("BEFORE INFERENCE") | |
| try: | |
| generator = torch.Generator(device).manual_seed(seed) | |
| output = pipe( | |
| prompt=prompt, | |
| height=height, | |
| width=width, | |
| num_inference_steps=steps, | |
| guidance_scale=0.0, | |
| generator=generator, | |
| ) | |
| log("β Inference finished.") | |
| log_system_stats("AFTER INFERENCE") | |
| return output.images[0], LOGS | |
| except Exception as e: | |
| log(f"β Inference error: {e}") | |
| return None, LOGS | |
| # ============================================================ | |
| # UI | |
| # ============================================================ | |
| with gr.Blocks(title="Z-Image Turbo Debugger") as demo: | |
| gr.Markdown("## **Z-Image Turbo β Full Debug + Live GPU/CPU Monitor**") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| prompt = gr.Textbox(label="Prompt", value="Realistic male portrait") | |
| height = gr.Slider(256, 2048, value=1024, step=8, label="Height") | |
| width = gr.Slider(256, 2048, value=1024, step=8, label="Width") | |
| steps = gr.Slider(1, 16, value=9, step=1, label="Steps") | |
| seed = gr.Slider(0, 999999, value=42, step=1, label="Seed") | |
| btn = gr.Button("Generate") | |
| with gr.Column(scale=1): | |
| image_out = gr.Image(label="Output") | |
| logs_panel = gr.Textbox(label="π Logs", lines=30) | |
| btn.click(generate_image, | |
| inputs=[prompt, height, width, steps, seed], | |
| outputs=[image_out, logs_panel]) | |
| demo.launch() | |