File size: 1,514 Bytes
e5fffa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "ranggafermata/Fermata-v1.2-light"  # replace with your actual repo

# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id, attn_implementation="eager")
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    attn_implementation="eager"
)
model.eval()

# Generation function
def chat(prompt, max_new_tokens=256, temperature=0.8, top_p=0.95):
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=max_new_tokens,
            temperature=temperature,
            top_p=top_p,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id,
        )
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# Gradio interface
gr.Interface(
    fn=chat,
    inputs=[
        gr.Textbox(lines=4, label="Prompt"),
        gr.Slider(64, 1024, value=256, step=64, label="Max New Tokens"),
        gr.Slider(0.1, 1.5, value=0.8, step=0.1, label="Temperature"),
        gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
    ],
    outputs=gr.Textbox(label="Response"),
    title="Fermata Assistant (Gemma 3 - 1B - IT)",
    description="A smart assistant built on Gemma 3B with personality from the Fermata project."
).launch()