import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "ranggafermata/Fermata-v1.2-light" # replace with your actual repo # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained(model_id, attn_implementation="eager") model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, attn_implementation="eager" ) model.eval() # Generation function def chat(prompt, max_new_tokens=256, temperature=0.8, top_p=0.95): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, do_sample=True, pad_token_id=tokenizer.eos_token_id, ) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Gradio interface gr.Interface( fn=chat, inputs=[ gr.Textbox(lines=4, label="Prompt"), gr.Slider(64, 1024, value=256, step=64, label="Max New Tokens"), gr.Slider(0.1, 1.5, value=0.8, step=0.1, label="Temperature"), gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p") ], outputs=gr.Textbox(label="Response"), title="Fermata Assistant (Gemma 3 - 1B - IT)", description="A smart assistant built on Gemma 3B with personality from the Fermata project." ).launch()