Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
|
| 4 |
-
from diffusers import
|
| 5 |
from diffusers import EulerDiscreteScheduler
|
| 6 |
|
| 7 |
device = "cpu"
|
|
@@ -17,17 +18,24 @@ if mps_available:
|
|
| 17 |
dtype = torch.float16
|
| 18 |
#print(f"device: {device}, dtype: {dtype}")
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
use_safetensors=True)
|
| 25 |
pipeline.to(device)
|
| 26 |
pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config, timestep_spacing="trailing")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
def
|
| 30 |
-
return
|
| 31 |
|
| 32 |
with gr.Blocks() as interface:
|
| 33 |
with gr.Column():
|
|
@@ -41,14 +49,20 @@ with gr.Blocks() as interface:
|
|
| 41 |
with gr.Column():
|
| 42 |
width = gr.Slider(label="Width", info="The width in pixels of the generated image.", value=576, minimum=512, maximum=1280, step=64, interactive=True)
|
| 43 |
height = gr.Slider(label="Height", info="The height in pixels of the generated image.", value=832, minimum=512, maximum=1280, step=64, interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
with gr.Column():
|
| 45 |
sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=5, minimum=3, maximum=10, step=1, interactive=True)
|
| 46 |
|
| 47 |
with gr.Row():
|
| 48 |
output = gr.Image()
|
| 49 |
|
| 50 |
-
generate_button.click(fn=generate, inputs=[prompt, width, height, sampling_steps], outputs=[output])
|
| 51 |
|
| 52 |
if __name__ == "__main__":
|
| 53 |
-
interface.launch()
|
| 54 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
import random
|
| 4 |
|
| 5 |
+
from diffusers import StableDiffusionXLPipeline
|
| 6 |
from diffusers import EulerDiscreteScheduler
|
| 7 |
|
| 8 |
device = "cpu"
|
|
|
|
| 18 |
dtype = torch.float16
|
| 19 |
#print(f"device: {device}, dtype: {dtype}")
|
| 20 |
|
| 21 |
+
pipeline = StableDiffusionXLPipeline.from_pretrained("recoilme/ColorfulXL-Lightning",
|
| 22 |
+
variant="fp16",
|
| 23 |
+
torch_dtype=dtype,
|
| 24 |
+
use_safetensors=True)
|
|
|
|
| 25 |
pipeline.to(device)
|
| 26 |
pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config, timestep_spacing="trailing")
|
| 27 |
+
# Comes from
|
| 28 |
+
# https://wandb.ai/nasirk24/UNET-FreeU-SDXL/reports/FreeU-SDXL-Optimal-Parameters--Vmlldzo1NDg4NTUw
|
| 29 |
+
if device == "cuda":
|
| 30 |
+
pipeline.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
|
| 31 |
+
|
| 32 |
|
| 33 |
+
def generate(prompt, width, height, sample_steps, seed):
|
| 34 |
+
generator = torch.Generator(device=device).manual_seed(int(seed))
|
| 35 |
+
return pipeline(prompt=prompt, prompt_2=prompt, guidance_scale=0, generator=generator, negative_prompt=None, negative_prompt_2=None, width=width, height=height, num_inference_steps=sample_steps).images[0]
|
| 36 |
|
| 37 |
+
def random_seed():
|
| 38 |
+
return random.randint(0, 2**32 - 1)
|
| 39 |
|
| 40 |
with gr.Blocks() as interface:
|
| 41 |
with gr.Column():
|
|
|
|
| 49 |
with gr.Column():
|
| 50 |
width = gr.Slider(label="Width", info="The width in pixels of the generated image.", value=576, minimum=512, maximum=1280, step=64, interactive=True)
|
| 51 |
height = gr.Slider(label="Height", info="The height in pixels of the generated image.", value=832, minimum=512, maximum=1280, step=64, interactive=True)
|
| 52 |
+
with gr.Row():
|
| 53 |
+
seed = gr.Number(label="Seed",
|
| 54 |
+
value=None,
|
| 55 |
+
scale=8,
|
| 56 |
+
info="Random seed for reproducibility.")
|
| 57 |
+
seed_button = gr.Button("🎲", scale=2, elem_id="seed_button")
|
| 58 |
+
seed_button.click(fn=random_seed, inputs=[], outputs=seed)
|
| 59 |
with gr.Column():
|
| 60 |
sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=5, minimum=3, maximum=10, step=1, interactive=True)
|
| 61 |
|
| 62 |
with gr.Row():
|
| 63 |
output = gr.Image()
|
| 64 |
|
| 65 |
+
generate_button.click(fn=generate, inputs=[prompt, width, height, sampling_steps, seed], outputs=[output])
|
| 66 |
|
| 67 |
if __name__ == "__main__":
|
| 68 |
+
interface.launch()
|
|
|