Rakibul commited on
Commit
e138277
·
1 Parent(s): 5a5588f

better ordering

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -44,9 +44,9 @@ def ci_plot(mean: float, low: float, upp: float):
44
  fig.tight_layout()
45
  return fig
46
 
47
- def predict_with_ci(essay: str, article: str) -> tuple[float, float, float, plt.Figure]:
48
  _warmup()
49
- mean, var = predict(essay, article)
50
  # scores were originally in [1, 7]
51
  # lets scale them to [0, 100]
52
  scale = 100 / 6
@@ -63,16 +63,16 @@ with gr.Blocks(title="UPLME", theme=Soft(primary_hue="blue")) as demo:
63
  gr.Markdown("# Empathy Prediction with Uncertainty Estimation")
64
  with gr.Row():
65
  with gr.Column():
66
- essay_input = gr.Textbox(label="Response (E.g., Essay) towards the stimulus", lines=6)
67
  article_input = gr.Textbox(label="Stimulus (E.g., News Article)", lines=6)
 
68
  button = gr.Button("Predict")
69
 
70
  gr.Examples(
71
  examples=[
72
- ["My heart just breaks for the people who are suffering.", "A month after Hurricane Matthew, 800,000 Haitians urgently need food."],
73
- ["I see, but this doesn't sound too worrisome to me.", "A month after Hurricane Matthew, 800,000 Haitians urgently need food."],
74
  ],
75
- inputs=[essay_input, article_input],
76
  )
77
 
78
  with gr.Column():
@@ -82,7 +82,7 @@ with gr.Blocks(title="UPLME", theme=Soft(primary_hue="blue")) as demo:
82
 
83
  fig = gr.Plot(show_label=False)
84
 
85
- button.click(fn=predict_with_ci, inputs=[essay_input, article_input], outputs=[output_mean, ci_low, ci_upp, fig])
86
 
87
  gr.Markdown("## About")
88
  gr.Markdown("""
 
44
  fig.tight_layout()
45
  return fig
46
 
47
+ def predict_with_ci(article: str, essay: str) -> tuple[float, float, float, plt.Figure]:
48
  _warmup()
49
+ mean, var = predict(essay, article) # the order is essay-article in UPLME model
50
  # scores were originally in [1, 7]
51
  # lets scale them to [0, 100]
52
  scale = 100 / 6
 
63
  gr.Markdown("# Empathy Prediction with Uncertainty Estimation")
64
  with gr.Row():
65
  with gr.Column():
 
66
  article_input = gr.Textbox(label="Stimulus (E.g., News Article)", lines=6)
67
+ essay_input = gr.Textbox(label="Response (E.g., Essay) towards the stimulus", lines=6)
68
  button = gr.Button("Predict")
69
 
70
  gr.Examples(
71
  examples=[
72
+ ["A month after Hurricane Matthew, 800,000 Haitians urgently need food.", "My heart just breaks for the people who are suffering."],
73
+ ["A month after Hurricane Matthew, 800,000 Haitians urgently need food.", "I see, but this doesn't sound too worrisome to me."],
74
  ],
75
+ inputs=[article_input, essay_input]
76
  )
77
 
78
  with gr.Column():
 
82
 
83
  fig = gr.Plot(show_label=False)
84
 
85
+ button.click(fn=predict_with_ci, inputs=[article_input, essay_input], outputs=[output_mean, ci_low, ci_upp, fig])
86
 
87
  gr.Markdown("## About")
88
  gr.Markdown("""