Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| from mmcv.runner.hooks import HOOKS | |
| from mmcv.runner.hooks.lr_updater import (CosineAnnealingLrUpdaterHook, | |
| annealing_cos) | |
| class YOLOXLrUpdaterHook(CosineAnnealingLrUpdaterHook): | |
| """YOLOX learning rate scheme. | |
| There are two main differences between YOLOXLrUpdaterHook | |
| and CosineAnnealingLrUpdaterHook. | |
| 1. When the current running epoch is greater than | |
| `max_epoch-last_epoch`, a fixed learning rate will be used | |
| 2. The exp warmup scheme is different with LrUpdaterHook in MMCV | |
| Args: | |
| num_last_epochs (int): The number of epochs with a fixed learning rate | |
| before the end of the training. | |
| """ | |
| def __init__(self, num_last_epochs, **kwargs): | |
| self.num_last_epochs = num_last_epochs | |
| super(YOLOXLrUpdaterHook, self).__init__(**kwargs) | |
| def get_warmup_lr(self, cur_iters): | |
| def _get_warmup_lr(cur_iters, regular_lr): | |
| # exp warmup scheme | |
| k = self.warmup_ratio * pow( | |
| (cur_iters + 1) / float(self.warmup_iters), 2) | |
| warmup_lr = [_lr * k for _lr in regular_lr] | |
| return warmup_lr | |
| if isinstance(self.base_lr, dict): | |
| lr_groups = {} | |
| for key, base_lr in self.base_lr.items(): | |
| lr_groups[key] = _get_warmup_lr(cur_iters, base_lr) | |
| return lr_groups | |
| else: | |
| return _get_warmup_lr(cur_iters, self.base_lr) | |
| def get_lr(self, runner, base_lr): | |
| last_iter = len(runner.data_loader) * self.num_last_epochs | |
| if self.by_epoch: | |
| progress = runner.epoch | |
| max_progress = runner.max_epochs | |
| else: | |
| progress = runner.iter | |
| max_progress = runner.max_iters | |
| progress += 1 | |
| if self.min_lr_ratio is not None: | |
| target_lr = base_lr * self.min_lr_ratio | |
| else: | |
| target_lr = self.min_lr | |
| if progress >= max_progress - last_iter: | |
| # fixed learning rate | |
| return target_lr | |
| else: | |
| return annealing_cos( | |
| base_lr, target_lr, (progress - self.warmup_iters) / | |
| (max_progress - self.warmup_iters - last_iter)) | |