Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import copy | |
| import platform | |
| import random | |
| import warnings | |
| from functools import partial | |
| import numpy as np | |
| import torch | |
| from mmcv.parallel import collate | |
| from mmcv.runner import get_dist_info | |
| from mmcv.utils import TORCH_VERSION, Registry, build_from_cfg, digit_version | |
| from torch.utils.data import DataLoader | |
| from .samplers import (ClassAwareSampler, DistributedGroupSampler, | |
| DistributedSampler, GroupSampler, InfiniteBatchSampler, | |
| InfiniteGroupBatchSampler) | |
| if platform.system() != 'Windows': | |
| # https://github.com/pytorch/pytorch/issues/973 | |
| import resource | |
| rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) | |
| base_soft_limit = rlimit[0] | |
| hard_limit = rlimit[1] | |
| soft_limit = min(max(4096, base_soft_limit), hard_limit) | |
| resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit)) | |
| DATASETS = Registry('dataset') | |
| PIPELINES = Registry('pipeline') | |
| def _concat_dataset(cfg, default_args=None): | |
| from .dataset_wrappers import ConcatDataset | |
| ann_files = cfg['ann_file'] | |
| img_prefixes = cfg.get('img_prefix', None) | |
| seg_prefixes = cfg.get('seg_prefix', None) | |
| proposal_files = cfg.get('proposal_file', None) | |
| separate_eval = cfg.get('separate_eval', True) | |
| datasets = [] | |
| num_dset = len(ann_files) | |
| for i in range(num_dset): | |
| data_cfg = copy.deepcopy(cfg) | |
| # pop 'separate_eval' since it is not a valid key for common datasets. | |
| if 'separate_eval' in data_cfg: | |
| data_cfg.pop('separate_eval') | |
| data_cfg['ann_file'] = ann_files[i] | |
| if isinstance(img_prefixes, (list, tuple)): | |
| data_cfg['img_prefix'] = img_prefixes[i] | |
| if isinstance(seg_prefixes, (list, tuple)): | |
| data_cfg['seg_prefix'] = seg_prefixes[i] | |
| if isinstance(proposal_files, (list, tuple)): | |
| data_cfg['proposal_file'] = proposal_files[i] | |
| datasets.append(build_dataset(data_cfg, default_args)) | |
| return ConcatDataset(datasets, separate_eval) | |
| def build_dataset(cfg, default_args=None): | |
| from .dataset_wrappers import (ClassBalancedDataset, ConcatDataset, | |
| MultiImageMixDataset, RepeatDataset) | |
| if isinstance(cfg, (list, tuple)): | |
| dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg]) | |
| elif cfg['type'] == 'ConcatDataset': | |
| dataset = ConcatDataset( | |
| [build_dataset(c, default_args) for c in cfg['datasets']], | |
| cfg.get('separate_eval', True)) | |
| elif cfg['type'] == 'RepeatDataset': | |
| dataset = RepeatDataset( | |
| build_dataset(cfg['dataset'], default_args), cfg['times']) | |
| elif cfg['type'] == 'ClassBalancedDataset': | |
| dataset = ClassBalancedDataset( | |
| build_dataset(cfg['dataset'], default_args), cfg['oversample_thr']) | |
| elif cfg['type'] == 'MultiImageMixDataset': | |
| cp_cfg = copy.deepcopy(cfg) | |
| cp_cfg['dataset'] = build_dataset(cp_cfg['dataset']) | |
| cp_cfg.pop('type') | |
| dataset = MultiImageMixDataset(**cp_cfg) | |
| elif isinstance(cfg.get('ann_file'), (list, tuple)): | |
| dataset = _concat_dataset(cfg, default_args) | |
| else: | |
| dataset = build_from_cfg(cfg, DATASETS, default_args) | |
| return dataset | |
| def build_dataloader(dataset, | |
| samples_per_gpu, | |
| workers_per_gpu, | |
| num_gpus=1, | |
| dist=True, | |
| shuffle=True, | |
| seed=None, | |
| runner_type='EpochBasedRunner', | |
| persistent_workers=False, | |
| class_aware_sampler=None, | |
| **kwargs): | |
| """Build PyTorch DataLoader. | |
| In distributed training, each GPU/process has a dataloader. | |
| In non-distributed training, there is only one dataloader for all GPUs. | |
| Args: | |
| dataset (Dataset): A PyTorch dataset. | |
| samples_per_gpu (int): Number of training samples on each GPU, i.e., | |
| batch size of each GPU. | |
| workers_per_gpu (int): How many subprocesses to use for data loading | |
| for each GPU. | |
| num_gpus (int): Number of GPUs. Only used in non-distributed training. | |
| dist (bool): Distributed training/test or not. Default: True. | |
| shuffle (bool): Whether to shuffle the data at every epoch. | |
| Default: True. | |
| seed (int, Optional): Seed to be used. Default: None. | |
| runner_type (str): Type of runner. Default: `EpochBasedRunner` | |
| persistent_workers (bool): If True, the data loader will not shutdown | |
| the worker processes after a dataset has been consumed once. | |
| This allows to maintain the workers `Dataset` instances alive. | |
| This argument is only valid when PyTorch>=1.7.0. Default: False. | |
| class_aware_sampler (dict): Whether to use `ClassAwareSampler` | |
| during training. Default: None. | |
| kwargs: any keyword argument to be used to initialize DataLoader | |
| Returns: | |
| DataLoader: A PyTorch dataloader. | |
| """ | |
| rank, world_size = get_dist_info() | |
| if dist: | |
| # When model is :obj:`DistributedDataParallel`, | |
| # `batch_size` of :obj:`dataloader` is the | |
| # number of training samples on each GPU. | |
| batch_size = samples_per_gpu | |
| num_workers = workers_per_gpu | |
| else: | |
| # When model is obj:`DataParallel` | |
| # the batch size is samples on all the GPUS | |
| batch_size = num_gpus * samples_per_gpu | |
| num_workers = num_gpus * workers_per_gpu | |
| if runner_type == 'IterBasedRunner': | |
| # this is a batch sampler, which can yield | |
| # a mini-batch indices each time. | |
| # it can be used in both `DataParallel` and | |
| # `DistributedDataParallel` | |
| if shuffle: | |
| batch_sampler = InfiniteGroupBatchSampler( | |
| dataset, batch_size, world_size, rank, seed=seed) | |
| else: | |
| batch_sampler = InfiniteBatchSampler( | |
| dataset, | |
| batch_size, | |
| world_size, | |
| rank, | |
| seed=seed, | |
| shuffle=False) | |
| batch_size = 1 | |
| sampler = None | |
| else: | |
| if class_aware_sampler is not None: | |
| # ClassAwareSampler can be used in both distributed and | |
| # non-distributed training. | |
| num_sample_class = class_aware_sampler.get('num_sample_class', 1) | |
| sampler = ClassAwareSampler( | |
| dataset, | |
| samples_per_gpu, | |
| world_size, | |
| rank, | |
| seed=seed, | |
| num_sample_class=num_sample_class) | |
| elif dist: | |
| # DistributedGroupSampler will definitely shuffle the data to | |
| # satisfy that images on each GPU are in the same group | |
| if shuffle: | |
| sampler = DistributedGroupSampler( | |
| dataset, samples_per_gpu, world_size, rank, seed=seed) | |
| else: | |
| sampler = DistributedSampler( | |
| dataset, world_size, rank, shuffle=False, seed=seed) | |
| else: | |
| sampler = GroupSampler(dataset, | |
| samples_per_gpu) if shuffle else None | |
| batch_sampler = None | |
| init_fn = partial( | |
| worker_init_fn, num_workers=num_workers, rank=rank, | |
| seed=seed) if seed is not None else None | |
| if (TORCH_VERSION != 'parrots' | |
| and digit_version(TORCH_VERSION) >= digit_version('1.7.0')): | |
| kwargs['persistent_workers'] = persistent_workers | |
| elif persistent_workers is True: | |
| warnings.warn('persistent_workers is invalid because your pytorch ' | |
| 'version is lower than 1.7.0') | |
| data_loader = DataLoader( | |
| dataset, | |
| batch_size=batch_size, | |
| sampler=sampler, | |
| num_workers=num_workers, | |
| batch_sampler=batch_sampler, | |
| collate_fn=partial(collate, samples_per_gpu=samples_per_gpu), | |
| pin_memory=kwargs.pop('pin_memory', False), | |
| worker_init_fn=init_fn, | |
| **kwargs) | |
| return data_loader | |
| def worker_init_fn(worker_id, num_workers, rank, seed): | |
| # The seed of each worker equals to | |
| # num_worker * rank + worker_id + user_seed | |
| worker_seed = num_workers * rank + worker_id + seed | |
| np.random.seed(worker_seed) | |
| random.seed(worker_seed) | |
| torch.manual_seed(worker_seed) | |