Spaces:
Runtime error
Runtime error
Removing UI validations temporarily
Browse files- app.py +34 -17
- grader_qa.py +301 -0
- utils.py +13 -297
app.py
CHANGED
|
@@ -9,8 +9,9 @@ from langchain.chat_models import ChatOpenAI
|
|
| 9 |
from langchain.embeddings import OpenAIEmbeddings
|
| 10 |
|
| 11 |
from grader import Grader
|
|
|
|
| 12 |
from ingest import ingest_canvas_discussions
|
| 13 |
-
from utils import
|
| 14 |
|
| 15 |
load_dotenv()
|
| 16 |
|
|
@@ -122,39 +123,52 @@ def get_grading_status(history):
|
|
| 122 |
grader_qa = GraderQA(grader, embeddings)
|
| 123 |
if len(history) == 1:
|
| 124 |
history = history + [(None, 'Grading is already complete. You can now ask questions')]
|
| 125 |
-
enable_fields(False, False, False, False, True, True, True)
|
| 126 |
# Check if data is ingested
|
| 127 |
elif len(glob.glob("docs/*.json")) > 0 and len(glob.glob("docs/*.html")):
|
| 128 |
if not grader_qa:
|
| 129 |
grader = Grader(qa_model)
|
| 130 |
if len(history) == 1:
|
| 131 |
history = history + [(None, 'Canvas data is already ingested. You can grade discussions now')]
|
| 132 |
-
enable_fields(False, False, False, True, True, False, False)
|
| 133 |
else:
|
| 134 |
history = history + [(None, 'Please ingest data and start grading')]
|
| 135 |
-
|
| 136 |
-
enable_fields(True, True, True, True, True, False, False)
|
| 137 |
return history
|
| 138 |
|
| 139 |
|
| 140 |
# handle enable/disable of fields
|
| 141 |
def enable_fields(url_status, canvas_api_key_status, submit_status, grade_status,
|
| 142 |
download_status, chatbot_txt_status, chatbot_btn_status):
|
| 143 |
-
url.interactive
|
| 144 |
-
canvas_api_key.interactive
|
| 145 |
-
submit.interactive
|
| 146 |
-
grade.interactive
|
| 147 |
-
download.interactive
|
| 148 |
-
txt.interactive
|
| 149 |
-
ask.interactive
|
|
|
|
| 150 |
if not chatbot_txt_status:
|
| 151 |
-
txt.placeholder
|
| 152 |
else:
|
| 153 |
-
txt.placeholder
|
| 154 |
if not url_status:
|
| 155 |
-
url.placeholder
|
| 156 |
if not canvas_api_key_status:
|
| 157 |
-
canvas_api_key.placeholder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
|
| 160 |
def bot(history):
|
|
@@ -210,10 +224,13 @@ with gr.Blocks() as demo:
|
|
| 210 |
bot, chatbot, chatbot
|
| 211 |
)
|
| 212 |
|
| 213 |
-
ask.click(add_text, inputs=[chatbot, txt], outputs=[chatbot, txt], postprocess=False,).then(
|
| 214 |
bot, chatbot, chatbot
|
| 215 |
)
|
| 216 |
|
|
|
|
|
|
|
|
|
|
| 217 |
if __name__ == "__main__":
|
| 218 |
demo.queue()
|
| 219 |
demo.queue(concurrency_count=5)
|
|
|
|
| 9 |
from langchain.embeddings import OpenAIEmbeddings
|
| 10 |
|
| 11 |
from grader import Grader
|
| 12 |
+
from grader_qa import GraderQA
|
| 13 |
from ingest import ingest_canvas_discussions
|
| 14 |
+
from utils import reset_folder
|
| 15 |
|
| 16 |
load_dotenv()
|
| 17 |
|
|
|
|
| 123 |
grader_qa = GraderQA(grader, embeddings)
|
| 124 |
if len(history) == 1:
|
| 125 |
history = history + [(None, 'Grading is already complete. You can now ask questions')]
|
| 126 |
+
# enable_fields(False, False, False, False, True, True, True)
|
| 127 |
# Check if data is ingested
|
| 128 |
elif len(glob.glob("docs/*.json")) > 0 and len(glob.glob("docs/*.html")):
|
| 129 |
if not grader_qa:
|
| 130 |
grader = Grader(qa_model)
|
| 131 |
if len(history) == 1:
|
| 132 |
history = history + [(None, 'Canvas data is already ingested. You can grade discussions now')]
|
| 133 |
+
# enable_fields(False, False, False, True, True, False, False)
|
| 134 |
else:
|
| 135 |
history = history + [(None, 'Please ingest data and start grading')]
|
| 136 |
+
# enable_fields(True, True, True, True, True, False, False)
|
|
|
|
| 137 |
return history
|
| 138 |
|
| 139 |
|
| 140 |
# handle enable/disable of fields
|
| 141 |
def enable_fields(url_status, canvas_api_key_status, submit_status, grade_status,
|
| 142 |
download_status, chatbot_txt_status, chatbot_btn_status):
|
| 143 |
+
url.update(interactive=url_status)
|
| 144 |
+
canvas_api_key.update(interactive=canvas_api_key_status)
|
| 145 |
+
submit.update(interactive=submit_status)
|
| 146 |
+
grade.update(interactive=grade_status)
|
| 147 |
+
download.update(interactive=download_status)
|
| 148 |
+
txt.update(interactive=chatbot_txt_status)
|
| 149 |
+
ask.update(interactive=chatbot_btn_status)
|
| 150 |
+
|
| 151 |
if not chatbot_txt_status:
|
| 152 |
+
txt.update(placeholder="Please grade discussions first")
|
| 153 |
else:
|
| 154 |
+
txt.update(placeholder="Ask a question")
|
| 155 |
if not url_status:
|
| 156 |
+
url.update(placeholder="Data already ingested")
|
| 157 |
if not canvas_api_key_status:
|
| 158 |
+
canvas_api_key.update(placeholder="Data already ingested")
|
| 159 |
+
return url, canvas_api_key, submit, grade, download, txt, ask
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def reset_data(history):
|
| 163 |
+
# Use shutil.rmtree() to delete output, docs, and vector_stores folders, reset grader and grader_qa, and get_grading_status, reset and return history
|
| 164 |
+
global grader, grader_qa
|
| 165 |
+
reset_folder('output')
|
| 166 |
+
reset_folder('docs')
|
| 167 |
+
reset_folder('vector_stores')
|
| 168 |
+
grader = None
|
| 169 |
+
grader_qa = None
|
| 170 |
+
history = [(None, 'Data reset successfully')]
|
| 171 |
+
return history
|
| 172 |
|
| 173 |
|
| 174 |
def bot(history):
|
|
|
|
| 224 |
bot, chatbot, chatbot
|
| 225 |
)
|
| 226 |
|
| 227 |
+
ask.click(add_text, inputs=[chatbot, txt], outputs=[chatbot, txt], postprocess=False, ).then(
|
| 228 |
bot, chatbot, chatbot
|
| 229 |
)
|
| 230 |
|
| 231 |
+
reset.click(reset_data, inputs=[chatbot], outputs=[chatbot], postprocess=False, show_progress=True, ).success(
|
| 232 |
+
bot, chatbot, chatbot)
|
| 233 |
+
|
| 234 |
if __name__ == "__main__":
|
| 235 |
demo.queue()
|
| 236 |
demo.queue(concurrency_count=5)
|
grader_qa.py
ADDED
|
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
from langchain import FAISS
|
| 4 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 5 |
+
from langchain.chat_models import ChatOpenAI
|
| 6 |
+
from langchain.document_loaders import CSVLoader
|
| 7 |
+
from langchain.memory import ConversationBufferMemory
|
| 8 |
+
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
|
| 9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def search_index_from_docs(source_chunks, embeddings):
|
| 13 |
+
# print("source chunks: " + str(len(source_chunks)))
|
| 14 |
+
# print("embeddings: " + str(embeddings))
|
| 15 |
+
search_index = FAISS.from_documents(source_chunks, embeddings)
|
| 16 |
+
return search_index
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def get_chat_history(inputs) -> str:
|
| 20 |
+
res = []
|
| 21 |
+
for human, ai in inputs:
|
| 22 |
+
res.append(f"Human:{human}\nAI:{ai}")
|
| 23 |
+
return "\n".join(res)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class GraderQA:
|
| 27 |
+
def __init__(self, grader, embeddings):
|
| 28 |
+
self.grader = grader
|
| 29 |
+
self.llm = self.grader.llm
|
| 30 |
+
self.index_file = "vector_stores/canvas-discussions.faiss"
|
| 31 |
+
self.pickle_file = "vector_stores/canvas-discussions.pkl"
|
| 32 |
+
self.rubric_text = grader.rubric_text
|
| 33 |
+
self.search_index = self.get_search_index(embeddings)
|
| 34 |
+
self.chain = self.create_chain(embeddings)
|
| 35 |
+
self.tokens = None
|
| 36 |
+
self.question = None
|
| 37 |
+
|
| 38 |
+
def get_search_index(self, embeddings):
|
| 39 |
+
if os.path.isfile(self.pickle_file) and os.path.isfile(self.index_file) and os.path.getsize(
|
| 40 |
+
self.pickle_file) > 0:
|
| 41 |
+
# Load index from pickle file
|
| 42 |
+
search_index = self.load_index(embeddings)
|
| 43 |
+
else:
|
| 44 |
+
search_index = self.create_index(embeddings)
|
| 45 |
+
print("Created index")
|
| 46 |
+
return search_index
|
| 47 |
+
|
| 48 |
+
def load_index(self, embeddings):
|
| 49 |
+
# Load index
|
| 50 |
+
db = FAISS.load_local(
|
| 51 |
+
folder_path="vector_stores/",
|
| 52 |
+
index_name="canvas-discussions", embeddings=embeddings,
|
| 53 |
+
)
|
| 54 |
+
print("Loaded index")
|
| 55 |
+
return db
|
| 56 |
+
|
| 57 |
+
def create_index(self, embeddings):
|
| 58 |
+
source_chunks = self.create_chunk_documents()
|
| 59 |
+
search_index = search_index_from_docs(source_chunks, embeddings)
|
| 60 |
+
FAISS.save_local(search_index, folder_path="vector_stores/", index_name="canvas-discussions")
|
| 61 |
+
return search_index
|
| 62 |
+
|
| 63 |
+
def create_chunk_documents(self):
|
| 64 |
+
sources = self.fetch_data_for_embeddings()
|
| 65 |
+
|
| 66 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
| 67 |
+
|
| 68 |
+
source_chunks = splitter.split_documents(sources)
|
| 69 |
+
|
| 70 |
+
print("chunks: " + str(len(source_chunks)))
|
| 71 |
+
print("sources: " + str(len(sources)))
|
| 72 |
+
|
| 73 |
+
return source_chunks
|
| 74 |
+
|
| 75 |
+
def fetch_data_for_embeddings(self):
|
| 76 |
+
document_list = self.get_csv_files()
|
| 77 |
+
print("document list: " + str(len(document_list)))
|
| 78 |
+
return document_list
|
| 79 |
+
|
| 80 |
+
def get_csv_files(self):
|
| 81 |
+
loader = CSVLoader(file_path=self.grader.csv, source_column="student_name")
|
| 82 |
+
document_list = loader.load()
|
| 83 |
+
return document_list
|
| 84 |
+
|
| 85 |
+
def create_chain(self, embeddings):
|
| 86 |
+
if not self.search_index:
|
| 87 |
+
self.search_index = self.load_index(embeddings)
|
| 88 |
+
|
| 89 |
+
question_prompt, combine_prompt = self.create_map_reduce_prompt()
|
| 90 |
+
# create agent, 1 chain for summary based question, 2nd chain for semantic retrieval based question
|
| 91 |
+
|
| 92 |
+
chain = ConversationalRetrievalChain.from_llm(llm=self.llm, chain_type='map_reduce',
|
| 93 |
+
retriever=self.search_index.as_retriever(search_type='mmr',
|
| 94 |
+
search_kwargs={
|
| 95 |
+
'lambda_mult': 1,
|
| 96 |
+
'fetch_k': 50,
|
| 97 |
+
'k': 30}),
|
| 98 |
+
return_source_documents=True,
|
| 99 |
+
verbose=True,
|
| 100 |
+
memory=ConversationBufferMemory(memory_key='chat_history',
|
| 101 |
+
return_messages=True,
|
| 102 |
+
output_key='answer'),
|
| 103 |
+
condense_question_llm=ChatOpenAI(temperature=0,
|
| 104 |
+
model='gpt-3.5-turbo'),
|
| 105 |
+
combine_docs_chain_kwargs={"question_prompt": question_prompt,
|
| 106 |
+
"combine_prompt": combine_prompt})
|
| 107 |
+
return chain
|
| 108 |
+
|
| 109 |
+
def create_map_reduce_prompt(self):
|
| 110 |
+
system_template = f"""Use the following portion of a long grading results document to answer the question BUT ONLY FOR THE STUDENT MENTIONED. Use the following examples to take guidance on how to answer the question.
|
| 111 |
+
Examples:
|
| 112 |
+
Question: How many students participated in the discussion?
|
| 113 |
+
Answer: This student participated in the discussion./This student did not participate in the discussion.
|
| 114 |
+
Question: What was the average score for the discussion?
|
| 115 |
+
Answer: This student received a score of 10/10 for the discussion.
|
| 116 |
+
Question: How many students received a full score?/How many students did not receive a full score?
|
| 117 |
+
Answer: This student received a full score./This student did not receive a full score.
|
| 118 |
+
Question: How many students lost marks in X category of the rubric?
|
| 119 |
+
Answer: This student lost marks in X category of the rubric./This student did not lose marks in X category of the rubric.
|
| 120 |
+
Question: Give me 3 best responses received for the discussion.
|
| 121 |
+
Answer: This student gave the following responses for the discussion and received a score of 10/10.
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
______________________
|
| 125 |
+
Grading Result For:
|
| 126 |
+
{{context}}
|
| 127 |
+
______________________
|
| 128 |
+
Following are the instructions and rubric of the discussion post for reference, used to grade the discussion.
|
| 129 |
+
----------------
|
| 130 |
+
Instructions and Rubric:
|
| 131 |
+
{self.rubric_text}
|
| 132 |
+
"""
|
| 133 |
+
messages = [
|
| 134 |
+
SystemMessagePromptTemplate.from_template(system_template),
|
| 135 |
+
HumanMessagePromptTemplate.from_template("{question}"),
|
| 136 |
+
]
|
| 137 |
+
CHAT_QUESTION_PROMPT = ChatPromptTemplate.from_messages(messages)
|
| 138 |
+
system_template = """You are Canvas Discussions Grading + Feedback QA Bot. Have a conversation with a human, answering the questions about the grading results, feedback, answers as accurately as possible.
|
| 139 |
+
Use the following answers for each student to answer the users question as accurately as possible.
|
| 140 |
+
You are an expert at basic calculations and answering questions on grading results and can answer the following questions with ease.
|
| 141 |
+
If you don't know the answer, just say that you don't know. Don't try to make up an answer.
|
| 142 |
+
______________________
|
| 143 |
+
{summaries}"""
|
| 144 |
+
messages = [
|
| 145 |
+
SystemMessagePromptTemplate.from_template(system_template),
|
| 146 |
+
HumanMessagePromptTemplate.from_template("{question}"),
|
| 147 |
+
]
|
| 148 |
+
CHAT_COMBINE_PROMPT = ChatPromptTemplate.from_messages(messages)
|
| 149 |
+
return CHAT_QUESTION_PROMPT, CHAT_COMBINE_PROMPT
|
| 150 |
+
|
| 151 |
+
def create_prompt(self):
|
| 152 |
+
system_template = f"""You are Canvas Discussions Grading + Feedback QA Bot. Have a conversation with a human, answering the questions about the grading results, feedback, answers as accurately as possible.
|
| 153 |
+
You are a grading assistant who graded the canvas discussions to create the following grading results and feedback.
|
| 154 |
+
Use the following instruction, rubric of the discussion which were used to grade the discussions and refine the answer if needed.
|
| 155 |
+
----------------
|
| 156 |
+
{self.rubric_text}
|
| 157 |
+
----------------
|
| 158 |
+
Use the following pieces of the grading results, score, feedback and summary of student responses to answer the users question as accurately as possible.
|
| 159 |
+
{{context}}"""
|
| 160 |
+
messages = [
|
| 161 |
+
SystemMessagePromptTemplate.from_template(system_template),
|
| 162 |
+
HumanMessagePromptTemplate.from_template("{question}"),
|
| 163 |
+
]
|
| 164 |
+
return ChatPromptTemplate.from_messages(messages)
|
| 165 |
+
|
| 166 |
+
def get_tokens(self):
|
| 167 |
+
total_tokens = 0
|
| 168 |
+
for doc in self.docs:
|
| 169 |
+
chat_prompt = self.prompt.format(context=doc, question=self.question)
|
| 170 |
+
|
| 171 |
+
num_tokens = self.llm.get_num_tokens(chat_prompt)
|
| 172 |
+
total_tokens += num_tokens
|
| 173 |
+
|
| 174 |
+
# summary = self.llm(summary_prompt)
|
| 175 |
+
|
| 176 |
+
# print (f"Summary: {summary.strip()}")
|
| 177 |
+
# print ("\n")
|
| 178 |
+
return total_tokens
|
| 179 |
+
|
| 180 |
+
def run_qa_chain(self, question):
|
| 181 |
+
self.question = question
|
| 182 |
+
self.get_tokens()
|
| 183 |
+
answer = self.chain(question)
|
| 184 |
+
return answer
|
| 185 |
+
|
| 186 |
+
# system_template = """You are Canvas Discussions Grading + Feedback QA Bot. Have a conversation with a human, answering the following questions as best you can.
|
| 187 |
+
# You are a grading assistant who graded the canvas discussions to create the following grading results and feedback. Use the following pieces of the grading results and feedback to answer the users question.
|
| 188 |
+
# Use the following pieces of context to answer the users question.
|
| 189 |
+
# ----------------
|
| 190 |
+
# {context}"""
|
| 191 |
+
#
|
| 192 |
+
# messages = [
|
| 193 |
+
# SystemMessagePromptTemplate.from_template(system_template),
|
| 194 |
+
# HumanMessagePromptTemplate.from_template("{question}"),
|
| 195 |
+
# ]
|
| 196 |
+
# CHAT_PROMPT = ChatPromptTemplate.from_messages(messages)
|
| 197 |
+
#
|
| 198 |
+
#
|
| 199 |
+
# def get_search_index(embeddings):
|
| 200 |
+
# global vectorstore_index
|
| 201 |
+
# if os.path.isfile(pickle_file) and os.path.isfile(index_file) and os.path.getsize(pickle_file) > 0:
|
| 202 |
+
# # Load index from pickle file
|
| 203 |
+
# search_index = load_index(embeddings)
|
| 204 |
+
# else:
|
| 205 |
+
# search_index = create_index(model)
|
| 206 |
+
# print("Created index")
|
| 207 |
+
#
|
| 208 |
+
# vectorstore_index = search_index
|
| 209 |
+
# return search_index
|
| 210 |
+
#
|
| 211 |
+
#
|
| 212 |
+
# def create_index(embeddings):
|
| 213 |
+
# source_chunks = create_chunk_documents()
|
| 214 |
+
# search_index = search_index_from_docs(source_chunks, embeddings)
|
| 215 |
+
# # search_index.persist()
|
| 216 |
+
# FAISS.save_local(search_index, folder_path="vector_stores/", index_name="canvas-discussions")
|
| 217 |
+
# # Save index to pickle file
|
| 218 |
+
# # with open(pickle_file, "wb") as f:
|
| 219 |
+
# # pickle.dump(search_index, f)
|
| 220 |
+
# return search_index
|
| 221 |
+
#
|
| 222 |
+
#
|
| 223 |
+
# def search_index_from_docs(source_chunks, embeddings):
|
| 224 |
+
# # print("source chunks: " + str(len(source_chunks)))
|
| 225 |
+
# # print("embeddings: " + str(embeddings))
|
| 226 |
+
# search_index = FAISS.from_documents(source_chunks, embeddings)
|
| 227 |
+
# return search_index
|
| 228 |
+
#
|
| 229 |
+
#
|
| 230 |
+
# def get_html_files():
|
| 231 |
+
# loader = DirectoryLoader('docs', glob="**/*.html", loader_cls=UnstructuredHTMLLoader, recursive=True)
|
| 232 |
+
# document_list = loader.load()
|
| 233 |
+
# for document in document_list:
|
| 234 |
+
# document.metadata["name"] = document.metadata["source"].split("/")[-1].split(".")[0]
|
| 235 |
+
# return document_list
|
| 236 |
+
#
|
| 237 |
+
#
|
| 238 |
+
# def get_text_files():
|
| 239 |
+
# loader = DirectoryLoader('docs', glob="**/*.txt", loader_cls=TextLoader, recursive=True)
|
| 240 |
+
# document_list = loader.load()
|
| 241 |
+
# return document_list
|
| 242 |
+
#
|
| 243 |
+
#
|
| 244 |
+
# def create_chunk_documents():
|
| 245 |
+
# sources = fetch_data_for_embeddings()
|
| 246 |
+
#
|
| 247 |
+
# splitter = RecursiveCharacterTextSplitter.from_language(
|
| 248 |
+
# language=Language.HTML, chunk_size=500, chunk_overlap=0
|
| 249 |
+
# )
|
| 250 |
+
#
|
| 251 |
+
# source_chunks = splitter.split_documents(sources)
|
| 252 |
+
#
|
| 253 |
+
# print("chunks: " + str(len(source_chunks)))
|
| 254 |
+
# print("sources: " + str(len(sources)))
|
| 255 |
+
#
|
| 256 |
+
# return source_chunks
|
| 257 |
+
#
|
| 258 |
+
#
|
| 259 |
+
# def create_chain(question, llm, embeddings):
|
| 260 |
+
# db = load_index(embeddings)
|
| 261 |
+
#
|
| 262 |
+
# # Create chain
|
| 263 |
+
# chain = ConversationalRetrievalChain.from_llm(llm, db.as_retriever(search_type='mmr',
|
| 264 |
+
# search_kwargs={'lambda_mult': 1, 'fetch_k': 50,
|
| 265 |
+
# 'k': 30}),
|
| 266 |
+
# return_source_documents=True,
|
| 267 |
+
# verbose=True,
|
| 268 |
+
# memory=ConversationSummaryBufferMemory(memory_key='chat_history',
|
| 269 |
+
# llm=llm, max_token_limit=40,
|
| 270 |
+
# return_messages=True,
|
| 271 |
+
# output_key='answer'),
|
| 272 |
+
# get_chat_history=get_chat_history,
|
| 273 |
+
# combine_docs_chain_kwargs={"prompt": CHAT_PROMPT})
|
| 274 |
+
#
|
| 275 |
+
# result = chain({"question": question})
|
| 276 |
+
#
|
| 277 |
+
# sources = []
|
| 278 |
+
# print(result)
|
| 279 |
+
#
|
| 280 |
+
# for document in result['source_documents']:
|
| 281 |
+
# sources.append("\n" + str(document.metadata))
|
| 282 |
+
# print(sources)
|
| 283 |
+
#
|
| 284 |
+
# source = ',\n'.join(set(sources))
|
| 285 |
+
# return result['answer'] + '\nSOURCES: ' + source
|
| 286 |
+
#
|
| 287 |
+
#
|
| 288 |
+
# def load_index(embeddings):
|
| 289 |
+
# # Load index
|
| 290 |
+
# db = FAISS.load_local(
|
| 291 |
+
# folder_path="vector_stores/",
|
| 292 |
+
# index_name="canvas-discussions", embeddings=embeddings,
|
| 293 |
+
# )
|
| 294 |
+
# return db
|
| 295 |
+
#
|
| 296 |
+
#
|
| 297 |
+
# def get_chat_history(inputs) -> str:
|
| 298 |
+
# res = []
|
| 299 |
+
# for human, ai in inputs:
|
| 300 |
+
# res.append(f"Human:{human}\nAI:{ai}")
|
| 301 |
+
# return "\n".join(res)
|
utils.py
CHANGED
|
@@ -1,298 +1,14 @@
|
|
| 1 |
import os
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
search_index = FAISS.from_documents(source_chunks, embeddings)
|
| 16 |
-
return search_index
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
def get_chat_history(inputs) -> str:
|
| 20 |
-
res = []
|
| 21 |
-
for human, ai in inputs:
|
| 22 |
-
res.append(f"Human:{human}\nAI:{ai}")
|
| 23 |
-
return "\n".join(res)
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
class GraderQA:
|
| 27 |
-
def __init__(self, grader, embeddings):
|
| 28 |
-
self.grader = grader
|
| 29 |
-
self.llm = self.grader.llm
|
| 30 |
-
self.index_file = "vector_stores/canvas-discussions.faiss"
|
| 31 |
-
self.pickle_file = "vector_stores/canvas-discussions.pkl"
|
| 32 |
-
self.rubric_text = grader.rubric_text
|
| 33 |
-
self.search_index = self.get_search_index(embeddings)
|
| 34 |
-
self.chain = self.create_chain(embeddings)
|
| 35 |
-
self.tokens = None
|
| 36 |
-
self.question = None
|
| 37 |
-
|
| 38 |
-
def get_search_index(self, embeddings):
|
| 39 |
-
if os.path.isfile(self.pickle_file) and os.path.isfile(self.index_file) and os.path.getsize(
|
| 40 |
-
self.pickle_file) > 0:
|
| 41 |
-
# Load index from pickle file
|
| 42 |
-
search_index = self.load_index(embeddings)
|
| 43 |
-
else:
|
| 44 |
-
search_index = self.create_index(embeddings)
|
| 45 |
-
print("Created index")
|
| 46 |
-
return search_index
|
| 47 |
-
|
| 48 |
-
def load_index(self, embeddings):
|
| 49 |
-
# Load index
|
| 50 |
-
db = FAISS.load_local(
|
| 51 |
-
folder_path="vector_stores/",
|
| 52 |
-
index_name="canvas-discussions", embeddings=embeddings,
|
| 53 |
-
)
|
| 54 |
-
print("Loaded index")
|
| 55 |
-
return db
|
| 56 |
-
|
| 57 |
-
def create_index(self, embeddings):
|
| 58 |
-
source_chunks = self.create_chunk_documents()
|
| 59 |
-
search_index = search_index_from_docs(source_chunks, embeddings)
|
| 60 |
-
FAISS.save_local(search_index, folder_path="vector_stores/", index_name="canvas-discussions")
|
| 61 |
-
return search_index
|
| 62 |
-
|
| 63 |
-
def create_chunk_documents(self):
|
| 64 |
-
sources = self.fetch_data_for_embeddings()
|
| 65 |
-
|
| 66 |
-
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
| 67 |
-
|
| 68 |
-
source_chunks = splitter.split_documents(sources)
|
| 69 |
-
|
| 70 |
-
print("chunks: " + str(len(source_chunks)))
|
| 71 |
-
print("sources: " + str(len(sources)))
|
| 72 |
-
|
| 73 |
-
return source_chunks
|
| 74 |
-
|
| 75 |
-
def fetch_data_for_embeddings(self):
|
| 76 |
-
document_list = self.get_csv_files()
|
| 77 |
-
print("document list: " + str(len(document_list)))
|
| 78 |
-
return document_list
|
| 79 |
-
|
| 80 |
-
def get_csv_files(self):
|
| 81 |
-
loader = CSVLoader(file_path=self.grader.csv, source_column="student_name")
|
| 82 |
-
document_list = loader.load()
|
| 83 |
-
return document_list
|
| 84 |
-
|
| 85 |
-
def create_chain(self, embeddings):
|
| 86 |
-
if not self.search_index:
|
| 87 |
-
self.search_index = self.load_index(embeddings)
|
| 88 |
-
|
| 89 |
-
question_prompt, combine_prompt = self.create_map_reduce_prompt()
|
| 90 |
-
|
| 91 |
-
chain = ConversationalRetrievalChain.from_llm(llm=self.llm, chain_type='map_reduce',
|
| 92 |
-
retriever=self.search_index.as_retriever(search_type='mmr',
|
| 93 |
-
search_kwargs={
|
| 94 |
-
'lambda_mult': 1,
|
| 95 |
-
'fetch_k': 50,
|
| 96 |
-
'k': 30}),
|
| 97 |
-
return_source_documents=True,
|
| 98 |
-
verbose=True,
|
| 99 |
-
memory=ConversationBufferMemory(memory_key='chat_history',
|
| 100 |
-
return_messages=True,
|
| 101 |
-
output_key='answer'),
|
| 102 |
-
condense_question_llm=ChatOpenAI(temperature=0,
|
| 103 |
-
model='gpt-3.5-turbo'),
|
| 104 |
-
combine_docs_chain_kwargs={"question_prompt": question_prompt,
|
| 105 |
-
"combine_prompt": combine_prompt})
|
| 106 |
-
return chain
|
| 107 |
-
|
| 108 |
-
def create_map_reduce_prompt(self):
|
| 109 |
-
system_template = f"""Use the following portion of a long grading results document to answer the question BUT ONLY FOR THE STUDENT MENTIONED. Use the following examples to take guidance on how to answer the question.
|
| 110 |
-
Examples:
|
| 111 |
-
Question: How many students participated in the discussion?
|
| 112 |
-
Answer: This student participated in the discussion./This student did not participate in the discussion.
|
| 113 |
-
Question: What was the average score for the discussion?
|
| 114 |
-
Answer: This student received a score of 10/10 for the discussion.
|
| 115 |
-
Question: How many students received a full score?/How many students did not receive a full score?
|
| 116 |
-
Answer: This student received a full score./This student did not receive a full score.
|
| 117 |
-
Question: How many students lost marks in X category of the rubric?
|
| 118 |
-
Answer: This student lost marks in X category of the rubric./This student did not lose marks in X category of the rubric.
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
______________________
|
| 122 |
-
Grading Result For:
|
| 123 |
-
{{context}}
|
| 124 |
-
______________________
|
| 125 |
-
Following are the instructions and rubric of the discussion post for reference, used to grade the discussion.
|
| 126 |
-
----------------
|
| 127 |
-
Instructions and Rubric:
|
| 128 |
-
{self.rubric_text}
|
| 129 |
-
"""
|
| 130 |
-
messages = [
|
| 131 |
-
SystemMessagePromptTemplate.from_template(system_template),
|
| 132 |
-
HumanMessagePromptTemplate.from_template("{question}"),
|
| 133 |
-
]
|
| 134 |
-
CHAT_QUESTION_PROMPT = ChatPromptTemplate.from_messages(messages)
|
| 135 |
-
system_template = """You are Canvas Discussions Grading + Feedback QA Bot. Have a conversation with a human, answering the questions about the grading results, feedback, answers as accurately as possible.
|
| 136 |
-
Use the following answers for each student to answer the users question as accurately as possible.
|
| 137 |
-
You are an expert at basic calculations and answering questions on grading results and can answer the following questions with ease.
|
| 138 |
-
If you don't know the answer, just say that you don't know. Don't try to make up an answer.
|
| 139 |
-
______________________
|
| 140 |
-
{summaries}"""
|
| 141 |
-
messages = [
|
| 142 |
-
SystemMessagePromptTemplate.from_template(system_template),
|
| 143 |
-
HumanMessagePromptTemplate.from_template("{question}"),
|
| 144 |
-
]
|
| 145 |
-
CHAT_COMBINE_PROMPT = ChatPromptTemplate.from_messages(messages)
|
| 146 |
-
return CHAT_QUESTION_PROMPT, CHAT_COMBINE_PROMPT
|
| 147 |
-
|
| 148 |
-
def create_prompt(self):
|
| 149 |
-
system_template = f"""You are Canvas Discussions Grading + Feedback QA Bot. Have a conversation with a human, answering the questions about the grading results, feedback, answers as accurately as possible.
|
| 150 |
-
You are a grading assistant who graded the canvas discussions to create the following grading results and feedback.
|
| 151 |
-
Use the following instruction, rubric of the discussion which were used to grade the discussions and refine the answer if needed.
|
| 152 |
-
----------------
|
| 153 |
-
{self.rubric_text}
|
| 154 |
-
----------------
|
| 155 |
-
Use the following pieces of the grading results, score, feedback and summary of student responses to answer the users question as accurately as possible.
|
| 156 |
-
{{context}}"""
|
| 157 |
-
messages = [
|
| 158 |
-
SystemMessagePromptTemplate.from_template(system_template),
|
| 159 |
-
HumanMessagePromptTemplate.from_template("{question}"),
|
| 160 |
-
]
|
| 161 |
-
return ChatPromptTemplate.from_messages(messages)
|
| 162 |
-
|
| 163 |
-
def get_tokens(self):
|
| 164 |
-
total_tokens = 0
|
| 165 |
-
for doc in self.docs:
|
| 166 |
-
chat_prompt = self.prompt.format(context=doc, question=self.question)
|
| 167 |
-
|
| 168 |
-
num_tokens = self.llm.get_num_tokens(chat_prompt)
|
| 169 |
-
total_tokens += num_tokens
|
| 170 |
-
|
| 171 |
-
# summary = self.llm(summary_prompt)
|
| 172 |
-
|
| 173 |
-
# print (f"Summary: {summary.strip()}")
|
| 174 |
-
# print ("\n")
|
| 175 |
-
return total_tokens
|
| 176 |
-
|
| 177 |
-
def run_qa_chain(self, question):
|
| 178 |
-
self.question = question
|
| 179 |
-
self.get_tokens()
|
| 180 |
-
answer = self.chain(question)
|
| 181 |
-
return answer
|
| 182 |
-
|
| 183 |
-
# system_template = """You are Canvas Discussions Grading + Feedback QA Bot. Have a conversation with a human, answering the following questions as best you can.
|
| 184 |
-
# You are a grading assistant who graded the canvas discussions to create the following grading results and feedback. Use the following pieces of the grading results and feedback to answer the users question.
|
| 185 |
-
# Use the following pieces of context to answer the users question.
|
| 186 |
-
# ----------------
|
| 187 |
-
# {context}"""
|
| 188 |
-
#
|
| 189 |
-
# messages = [
|
| 190 |
-
# SystemMessagePromptTemplate.from_template(system_template),
|
| 191 |
-
# HumanMessagePromptTemplate.from_template("{question}"),
|
| 192 |
-
# ]
|
| 193 |
-
# CHAT_PROMPT = ChatPromptTemplate.from_messages(messages)
|
| 194 |
-
#
|
| 195 |
-
#
|
| 196 |
-
# def get_search_index(embeddings):
|
| 197 |
-
# global vectorstore_index
|
| 198 |
-
# if os.path.isfile(pickle_file) and os.path.isfile(index_file) and os.path.getsize(pickle_file) > 0:
|
| 199 |
-
# # Load index from pickle file
|
| 200 |
-
# search_index = load_index(embeddings)
|
| 201 |
-
# else:
|
| 202 |
-
# search_index = create_index(model)
|
| 203 |
-
# print("Created index")
|
| 204 |
-
#
|
| 205 |
-
# vectorstore_index = search_index
|
| 206 |
-
# return search_index
|
| 207 |
-
#
|
| 208 |
-
#
|
| 209 |
-
# def create_index(embeddings):
|
| 210 |
-
# source_chunks = create_chunk_documents()
|
| 211 |
-
# search_index = search_index_from_docs(source_chunks, embeddings)
|
| 212 |
-
# # search_index.persist()
|
| 213 |
-
# FAISS.save_local(search_index, folder_path="vector_stores/", index_name="canvas-discussions")
|
| 214 |
-
# # Save index to pickle file
|
| 215 |
-
# # with open(pickle_file, "wb") as f:
|
| 216 |
-
# # pickle.dump(search_index, f)
|
| 217 |
-
# return search_index
|
| 218 |
-
#
|
| 219 |
-
#
|
| 220 |
-
# def search_index_from_docs(source_chunks, embeddings):
|
| 221 |
-
# # print("source chunks: " + str(len(source_chunks)))
|
| 222 |
-
# # print("embeddings: " + str(embeddings))
|
| 223 |
-
# search_index = FAISS.from_documents(source_chunks, embeddings)
|
| 224 |
-
# return search_index
|
| 225 |
-
#
|
| 226 |
-
#
|
| 227 |
-
# def get_html_files():
|
| 228 |
-
# loader = DirectoryLoader('docs', glob="**/*.html", loader_cls=UnstructuredHTMLLoader, recursive=True)
|
| 229 |
-
# document_list = loader.load()
|
| 230 |
-
# for document in document_list:
|
| 231 |
-
# document.metadata["name"] = document.metadata["source"].split("/")[-1].split(".")[0]
|
| 232 |
-
# return document_list
|
| 233 |
-
#
|
| 234 |
-
#
|
| 235 |
-
# def get_text_files():
|
| 236 |
-
# loader = DirectoryLoader('docs', glob="**/*.txt", loader_cls=TextLoader, recursive=True)
|
| 237 |
-
# document_list = loader.load()
|
| 238 |
-
# return document_list
|
| 239 |
-
#
|
| 240 |
-
#
|
| 241 |
-
# def create_chunk_documents():
|
| 242 |
-
# sources = fetch_data_for_embeddings()
|
| 243 |
-
#
|
| 244 |
-
# splitter = RecursiveCharacterTextSplitter.from_language(
|
| 245 |
-
# language=Language.HTML, chunk_size=500, chunk_overlap=0
|
| 246 |
-
# )
|
| 247 |
-
#
|
| 248 |
-
# source_chunks = splitter.split_documents(sources)
|
| 249 |
-
#
|
| 250 |
-
# print("chunks: " + str(len(source_chunks)))
|
| 251 |
-
# print("sources: " + str(len(sources)))
|
| 252 |
-
#
|
| 253 |
-
# return source_chunks
|
| 254 |
-
#
|
| 255 |
-
#
|
| 256 |
-
# def create_chain(question, llm, embeddings):
|
| 257 |
-
# db = load_index(embeddings)
|
| 258 |
-
#
|
| 259 |
-
# # Create chain
|
| 260 |
-
# chain = ConversationalRetrievalChain.from_llm(llm, db.as_retriever(search_type='mmr',
|
| 261 |
-
# search_kwargs={'lambda_mult': 1, 'fetch_k': 50,
|
| 262 |
-
# 'k': 30}),
|
| 263 |
-
# return_source_documents=True,
|
| 264 |
-
# verbose=True,
|
| 265 |
-
# memory=ConversationSummaryBufferMemory(memory_key='chat_history',
|
| 266 |
-
# llm=llm, max_token_limit=40,
|
| 267 |
-
# return_messages=True,
|
| 268 |
-
# output_key='answer'),
|
| 269 |
-
# get_chat_history=get_chat_history,
|
| 270 |
-
# combine_docs_chain_kwargs={"prompt": CHAT_PROMPT})
|
| 271 |
-
#
|
| 272 |
-
# result = chain({"question": question})
|
| 273 |
-
#
|
| 274 |
-
# sources = []
|
| 275 |
-
# print(result)
|
| 276 |
-
#
|
| 277 |
-
# for document in result['source_documents']:
|
| 278 |
-
# sources.append("\n" + str(document.metadata))
|
| 279 |
-
# print(sources)
|
| 280 |
-
#
|
| 281 |
-
# source = ',\n'.join(set(sources))
|
| 282 |
-
# return result['answer'] + '\nSOURCES: ' + source
|
| 283 |
-
#
|
| 284 |
-
#
|
| 285 |
-
# def load_index(embeddings):
|
| 286 |
-
# # Load index
|
| 287 |
-
# db = FAISS.load_local(
|
| 288 |
-
# folder_path="vector_stores/",
|
| 289 |
-
# index_name="canvas-discussions", embeddings=embeddings,
|
| 290 |
-
# )
|
| 291 |
-
# return db
|
| 292 |
-
#
|
| 293 |
-
#
|
| 294 |
-
# def get_chat_history(inputs) -> str:
|
| 295 |
-
# res = []
|
| 296 |
-
# for human, ai in inputs:
|
| 297 |
-
# res.append(f"Human:{human}\nAI:{ai}")
|
| 298 |
-
# return "\n".join(res)
|
|
|
|
| 1 |
import os
|
| 2 |
+
import shutil
|
| 3 |
+
import time
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def reset_folder(destination):
|
| 7 |
+
# synchrnously and recursively delete the destination folder and all its contents, donot return until done
|
| 8 |
+
if os.path.isdir(destination):
|
| 9 |
+
shutil.rmtree(destination)
|
| 10 |
+
while os.path.isdir(destination):
|
| 11 |
+
time.sleep(4)
|
| 12 |
+
os.mkdir(destination)
|
| 13 |
+
while not os.path.isdir(destination):
|
| 14 |
+
time.sleep(4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|