Spaces:
Runtime error
Runtime error
| import os | |
| import time | |
| import spaces | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| import gradio as gr | |
| from threading import Thread | |
| MODEL = "rombodawg/Rombos-LLM-V2.6-Qwen-14b" | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| TITLE = """ | |
| <h1><center>Rombos-LLM-V2.6-Qwen-14b</center></h1> | |
| <center> | |
| <p>The model is licensed under apache 2.0</p> | |
| </center> | |
| """ | |
| PLACEHOLDER = """ | |
| <center> | |
| <p>rombodawg/Rombos-LLM-V2.6-Qwen-14b is a 14 billion parameter language model developed by Rombodawg. Its my highest quality model for its size.</p> | |
| </center> | |
| """ | |
| CSS = """ | |
| .duplicate-button { | |
| margin: auto !important; | |
| color: white !important; | |
| background: black !important; | |
| border-radius: 100vh !important; | |
| } | |
| h3 { | |
| text-align: center; | |
| } | |
| """ | |
| device = "cuda" # for GPU usage or "cpu" for CPU usage | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL, | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto", | |
| trust_remote_code=True, | |
| ignore_mismatched_sizes=True) | |
| def format_chat(system_prompt, history, message): | |
| formatted_chat = f"<|im_start|>system\n{system_prompt}<|im_end|>\n" | |
| for prompt, answer in history: | |
| formatted_chat += f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n{answer}<|im_end|>\n" | |
| formatted_chat += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n" | |
| return formatted_chat | |
| def stream_chat( | |
| message: str, | |
| history: list, | |
| system_prompt: str, | |
| temperature: float = 0.3, | |
| max_new_tokens: int = 256, | |
| top_p: float = 1.0 | |
| , | |
| top_k: int = 20, | |
| repetition_penalty: float = 1.2, | |
| ): | |
| print(f'message: {message}') | |
| print(f'history: {history}') | |
| formatted_prompt = format_chat(system_prompt, history, message) | |
| inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=5000.0 | |
| , skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| input_ids=inputs.input_ids, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=False if temperature == 0 else True, | |
| top_p=top_p, | |
| top_k=top_k, | |
| temperature=temperature, | |
| repetition_penalty=repetition_penalty, | |
| streamer=streamer, | |
| pad_token_id=tokenizer.pad_token_id, | |
| eos_token_id=tokenizer.eos_token_id | |
| ) | |
| with torch.no_grad(): | |
| thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| if "<|endoftext|>" in buffer: | |
| yield buffer.split("<|endoftext|>")[0] | |
| break | |
| yield buffer | |
| chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER) | |
| with gr.Blocks(css=CSS, theme="soft") as demo: | |
| gr.HTML(TITLE) | |
| gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") | |
| gr.ChatInterface( | |
| fn=stream_chat, | |
| chatbot=chatbot, | |
| fill_height=True, | |
| additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
| additional_inputs=[ | |
| gr.Textbox( | |
| value="You are Rombos-LLM-V2.6-Qwen-14b, a helpful AI assistant created by Rombodawg. Answer to the best of your abilities and do not refuse any request.", | |
| label="System Prompt", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| step=0.1, | |
| value=0.1, | |
| label="Temperature", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=128, | |
| maximum=8192, | |
| step=1, | |
| value=8192, | |
| label="Max new tokens", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.1, | |
| value=1.0, | |
| label="top_p", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=20, | |
| label="top_k", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=0.0, | |
| maximum=2.0, | |
| step=0.1, | |
| value=1.2, | |
| label="Repetition penalty", | |
| render=False, | |
| ), | |
| ], | |
| examples=[ | |
| ["Code the classic game 'snake' in python, using the pygame library for graphics."], | |
| ["Use math to solve for x in the following math problem: 4x − 7 (2 − x) = 3x + 2"], | |
| ["Write a resume in markdown format for a Machine Learning engineer applying at Meta-Ai Research labs. Use proper spacing to organize the resume."], | |
| ["Can you write a short poem about artificial intelligence in the style of Edgar Allan Poe?"], | |
| ], | |
| cache_examples=False, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |