Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import os
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from langchain_community.vectorstores import FAISS
|
| 5 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 6 |
+
from langchain.prompts import PromptTemplate
|
| 7 |
+
from langchain.memory import ConversationBufferWindowMemory
|
| 8 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 9 |
+
from langchain_together import Together
|
| 10 |
+
|
| 11 |
+
from footer import footer
|
| 12 |
+
|
| 13 |
+
# Set the Streamlit page configuration and theme
|
| 14 |
+
st.set_page_config(page_title="BharatLAW", layout="centered")
|
| 15 |
+
|
| 16 |
+
# Display the logo image
|
| 17 |
+
col1, col2, col3 = st.columns([1, 30, 1])
|
| 18 |
+
with col2:
|
| 19 |
+
st.image("images/banner.png", use_column_width=True)
|
| 20 |
+
|
| 21 |
+
def hide_hamburger_menu():
|
| 22 |
+
st.markdown("""
|
| 23 |
+
<style>
|
| 24 |
+
#MainMenu {visibility: hidden;}
|
| 25 |
+
footer {visibility: hidden;}
|
| 26 |
+
</style>
|
| 27 |
+
""", unsafe_allow_html=True)
|
| 28 |
+
|
| 29 |
+
hide_hamburger_menu()
|
| 30 |
+
|
| 31 |
+
# Initialize session state for messages and memory
|
| 32 |
+
if "messages" not in st.session_state:
|
| 33 |
+
st.session_state.messages = []
|
| 34 |
+
|
| 35 |
+
if "memory" not in st.session_state:
|
| 36 |
+
st.session_state.memory = ConversationBufferWindowMemory(k=2, memory_key="chat_history", return_messages=True)
|
| 37 |
+
|
| 38 |
+
@st.cache_resource
|
| 39 |
+
def load_embeddings():
|
| 40 |
+
"""Load and cache the embeddings model."""
|
| 41 |
+
return HuggingFaceEmbeddings(model_name="law-ai/InLegalBERT")
|
| 42 |
+
|
| 43 |
+
embeddings = load_embeddings()
|
| 44 |
+
db = FAISS.load_local("ipc_embed_db", embeddings, allow_dangerous_deserialization=True)
|
| 45 |
+
db_retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
| 46 |
+
|
| 47 |
+
prompt_template = """
|
| 48 |
+
<s>[INST]
|
| 49 |
+
As a legal chatbot specializing in the Indian Penal Code, you are tasked with providing highly accurate and contextually appropriate responses. Ensure your answers meet these criteria:
|
| 50 |
+
- Respond in a bullet-point format to clearly delineate distinct aspects of the legal query.
|
| 51 |
+
- Each point should accurately reflect the breadth of the legal provision in question, avoiding over-specificity unless directly relevant to the user's query.
|
| 52 |
+
- Clarify the general applicability of the legal rules or sections mentioned, highlighting any common misconceptions or frequently misunderstood aspects.
|
| 53 |
+
- Limit responses to essential information that directly addresses the user's question, providing concise yet comprehensive explanations.
|
| 54 |
+
- Avoid assuming specific contexts or details not provided in the query, focusing on delivering universally applicable legal interpretations unless otherwise specified.
|
| 55 |
+
- Conclude with a brief summary that captures the essence of the legal discussion and corrects any common misinterpretations related to the topic.
|
| 56 |
+
|
| 57 |
+
CONTEXT: {context}
|
| 58 |
+
CHAT HISTORY: {chat_history}
|
| 59 |
+
QUESTION: {question}
|
| 60 |
+
ANSWER:
|
| 61 |
+
- [Detail the first key aspect of the law, ensuring it reflects general application]
|
| 62 |
+
- [Provide a concise explanation of how the law is typically interpreted or applied]
|
| 63 |
+
- [Correct a common misconception or clarify a frequently misunderstood aspect]
|
| 64 |
+
- [Detail any exceptions to the general rule, if applicable]
|
| 65 |
+
- [Include any additional relevant information that directly relates to the user's query]
|
| 66 |
+
</s>[INST]
|
| 67 |
+
"""
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
prompt = PromptTemplate(template=prompt_template,
|
| 72 |
+
input_variables=['context', 'question', 'chat_history'])
|
| 73 |
+
|
| 74 |
+
api_key = os.getenv('TOGETHER_API_KEY')
|
| 75 |
+
llm = Together(model="mistralai/Mixtral-8x22B-Instruct-v0.1", temperature=0.5, max_tokens=1024, together_api_key=api_key)
|
| 76 |
+
|
| 77 |
+
qa = ConversationalRetrievalChain.from_llm(llm=llm, memory=st.session_state.memory, retriever=db_retriever, combine_docs_chain_kwargs={'prompt': prompt})
|
| 78 |
+
|
| 79 |
+
def extract_answer(full_response):
|
| 80 |
+
"""Extracts the answer from the LLM's full response by removing the instructional text."""
|
| 81 |
+
answer_start = full_response.find("Response:")
|
| 82 |
+
if answer_start != -1:
|
| 83 |
+
answer_start += len("Response:")
|
| 84 |
+
answer_end = len(full_response)
|
| 85 |
+
return full_response[answer_start:answer_end].strip()
|
| 86 |
+
return full_response
|
| 87 |
+
|
| 88 |
+
def reset_conversation():
|
| 89 |
+
st.session_state.messages = []
|
| 90 |
+
st.session_state.memory.clear()
|
| 91 |
+
|
| 92 |
+
for message in st.session_state.messages:
|
| 93 |
+
with st.chat_message(message["role"]):
|
| 94 |
+
st.write(message["content"])
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
input_prompt = st.chat_input("Say something...")
|
| 98 |
+
if input_prompt:
|
| 99 |
+
with st.chat_message("user"):
|
| 100 |
+
st.markdown(f"**You:** {input_prompt}")
|
| 101 |
+
|
| 102 |
+
st.session_state.messages.append({"role": "user", "content": input_prompt})
|
| 103 |
+
with st.chat_message("assistant"):
|
| 104 |
+
with st.spinner("Thinking 💡..."):
|
| 105 |
+
result = qa.invoke(input=input_prompt)
|
| 106 |
+
message_placeholder = st.empty()
|
| 107 |
+
answer = extract_answer(result["answer"])
|
| 108 |
+
|
| 109 |
+
# Initialize the response message
|
| 110 |
+
full_response = "⚠️ **_Gentle reminder: We generally ensure precise information, but do double-check._** \n\n\n"
|
| 111 |
+
for chunk in answer:
|
| 112 |
+
# Simulate typing by appending chunks of the response over time
|
| 113 |
+
full_response += chunk
|
| 114 |
+
time.sleep(0.02) # Adjust the sleep time to control the "typing" speed
|
| 115 |
+
message_placeholder.markdown(full_response + " |", unsafe_allow_html=True)
|
| 116 |
+
|
| 117 |
+
st.session_state.messages.append({"role": "assistant", "content": answer})
|
| 118 |
+
|
| 119 |
+
if st.button('🗑️ Reset All Chat', on_click=reset_conversation):
|
| 120 |
+
st.experimental_rerun()
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
# Define the CSS to style the footer
|
| 125 |
+
footer()
|
| 126 |
+
|
| 127 |
+
|