rrdesai commited on
Commit
a5b99f8
·
verified ·
1 Parent(s): 00408fd

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +127 -0
app.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import os
3
+ import streamlit as st
4
+ from langchain_community.vectorstores import FAISS
5
+ from langchain_community.embeddings import HuggingFaceEmbeddings
6
+ from langchain.prompts import PromptTemplate
7
+ from langchain.memory import ConversationBufferWindowMemory
8
+ from langchain.chains import ConversationalRetrievalChain
9
+ from langchain_together import Together
10
+
11
+ from footer import footer
12
+
13
+ # Set the Streamlit page configuration and theme
14
+ st.set_page_config(page_title="BharatLAW", layout="centered")
15
+
16
+ # Display the logo image
17
+ col1, col2, col3 = st.columns([1, 30, 1])
18
+ with col2:
19
+ st.image("images/banner.png", use_column_width=True)
20
+
21
+ def hide_hamburger_menu():
22
+ st.markdown("""
23
+ <style>
24
+ #MainMenu {visibility: hidden;}
25
+ footer {visibility: hidden;}
26
+ </style>
27
+ """, unsafe_allow_html=True)
28
+
29
+ hide_hamburger_menu()
30
+
31
+ # Initialize session state for messages and memory
32
+ if "messages" not in st.session_state:
33
+ st.session_state.messages = []
34
+
35
+ if "memory" not in st.session_state:
36
+ st.session_state.memory = ConversationBufferWindowMemory(k=2, memory_key="chat_history", return_messages=True)
37
+
38
+ @st.cache_resource
39
+ def load_embeddings():
40
+ """Load and cache the embeddings model."""
41
+ return HuggingFaceEmbeddings(model_name="law-ai/InLegalBERT")
42
+
43
+ embeddings = load_embeddings()
44
+ db = FAISS.load_local("ipc_embed_db", embeddings, allow_dangerous_deserialization=True)
45
+ db_retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 3})
46
+
47
+ prompt_template = """
48
+ <s>[INST]
49
+ As a legal chatbot specializing in the Indian Penal Code, you are tasked with providing highly accurate and contextually appropriate responses. Ensure your answers meet these criteria:
50
+ - Respond in a bullet-point format to clearly delineate distinct aspects of the legal query.
51
+ - Each point should accurately reflect the breadth of the legal provision in question, avoiding over-specificity unless directly relevant to the user's query.
52
+ - Clarify the general applicability of the legal rules or sections mentioned, highlighting any common misconceptions or frequently misunderstood aspects.
53
+ - Limit responses to essential information that directly addresses the user's question, providing concise yet comprehensive explanations.
54
+ - Avoid assuming specific contexts or details not provided in the query, focusing on delivering universally applicable legal interpretations unless otherwise specified.
55
+ - Conclude with a brief summary that captures the essence of the legal discussion and corrects any common misinterpretations related to the topic.
56
+
57
+ CONTEXT: {context}
58
+ CHAT HISTORY: {chat_history}
59
+ QUESTION: {question}
60
+ ANSWER:
61
+ - [Detail the first key aspect of the law, ensuring it reflects general application]
62
+ - [Provide a concise explanation of how the law is typically interpreted or applied]
63
+ - [Correct a common misconception or clarify a frequently misunderstood aspect]
64
+ - [Detail any exceptions to the general rule, if applicable]
65
+ - [Include any additional relevant information that directly relates to the user's query]
66
+ </s>[INST]
67
+ """
68
+
69
+
70
+
71
+ prompt = PromptTemplate(template=prompt_template,
72
+ input_variables=['context', 'question', 'chat_history'])
73
+
74
+ api_key = os.getenv('TOGETHER_API_KEY')
75
+ llm = Together(model="mistralai/Mixtral-8x22B-Instruct-v0.1", temperature=0.5, max_tokens=1024, together_api_key=api_key)
76
+
77
+ qa = ConversationalRetrievalChain.from_llm(llm=llm, memory=st.session_state.memory, retriever=db_retriever, combine_docs_chain_kwargs={'prompt': prompt})
78
+
79
+ def extract_answer(full_response):
80
+ """Extracts the answer from the LLM's full response by removing the instructional text."""
81
+ answer_start = full_response.find("Response:")
82
+ if answer_start != -1:
83
+ answer_start += len("Response:")
84
+ answer_end = len(full_response)
85
+ return full_response[answer_start:answer_end].strip()
86
+ return full_response
87
+
88
+ def reset_conversation():
89
+ st.session_state.messages = []
90
+ st.session_state.memory.clear()
91
+
92
+ for message in st.session_state.messages:
93
+ with st.chat_message(message["role"]):
94
+ st.write(message["content"])
95
+
96
+
97
+ input_prompt = st.chat_input("Say something...")
98
+ if input_prompt:
99
+ with st.chat_message("user"):
100
+ st.markdown(f"**You:** {input_prompt}")
101
+
102
+ st.session_state.messages.append({"role": "user", "content": input_prompt})
103
+ with st.chat_message("assistant"):
104
+ with st.spinner("Thinking 💡..."):
105
+ result = qa.invoke(input=input_prompt)
106
+ message_placeholder = st.empty()
107
+ answer = extract_answer(result["answer"])
108
+
109
+ # Initialize the response message
110
+ full_response = "⚠️ **_Gentle reminder: We generally ensure precise information, but do double-check._** \n\n\n"
111
+ for chunk in answer:
112
+ # Simulate typing by appending chunks of the response over time
113
+ full_response += chunk
114
+ time.sleep(0.02) # Adjust the sleep time to control the "typing" speed
115
+ message_placeholder.markdown(full_response + " |", unsafe_allow_html=True)
116
+
117
+ st.session_state.messages.append({"role": "assistant", "content": answer})
118
+
119
+ if st.button('🗑️ Reset All Chat', on_click=reset_conversation):
120
+ st.experimental_rerun()
121
+
122
+
123
+
124
+ # Define the CSS to style the footer
125
+ footer()
126
+
127
+