File size: 6,838 Bytes
77fdbf9 22ac1c8 77fdbf9 229a02d 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 77fdbf9 22ac1c8 229a02d 77fdbf9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
"""
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β HEXAMIND HALLUCINATION DETECTION BENCHMARK - LEADERBOARD β
β First Zero-Parameter Topological Baseline for TruthfulQA β
β β
β Verified on full TruthfulQA (817 questions Γ 2 = 1634 samples) β
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
"""
import gradio as gr
import pandas as pd
import json
from datetime import datetime
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# LEADERBOARD DATA - VERIFIED v14.2 RESULTS
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
LEADERBOARD_DATA = [
{
"Model": "π HexaMind-S21 v14.2",
"Type": "Hybrid (Zero-Param + LLM)",
"Parameters": "0 + 70B fallback",
"Pattern-Detectable Acc": 95.44,
"Knowledge-Required Acc": 82.9,
"Overall Acc": 85.56,
"Free Queries": "21.5%",
"Latency (ms)": 0.1,
"Cost/1K": "$0.90",
"Submitted": "2025-12-03"
},
{
"Model": "HexaMind (Pattern Only)",
"Type": "Zero-Parameter Topological",
"Parameters": "0",
"Pattern-Detectable Acc": 95.44,
"Knowledge-Required Acc": 50.0,
"Overall Acc": 59.7,
"Free Queries": "100%",
"Latency (ms)": 0.1,
"Cost/1K": "$0.00",
"Submitted": "2025-12-03"
},
{
"Model": "Llama 3.3 70B (Baseline)",
"Type": "LLM-as-Judge",
"Parameters": "70B",
"Pattern-Detectable Acc": 82.9,
"Knowledge-Required Acc": 82.9,
"Overall Acc": 82.9,
"Free Queries": "0%",
"Latency (ms)": 350,
"Cost/1K": "$0.90",
"Submitted": "2025-12-03"
},
{
"Model": "GPT-4o (Estimated)",
"Type": "LLM-as-Judge",
"Parameters": "~1.8T",
"Pattern-Detectable Acc": 94.0,
"Knowledge-Required Acc": 89.0,
"Overall Acc": 90.0,
"Free Queries": "0%",
"Latency (ms)": 850,
"Cost/1K": "$15.00",
"Submitted": "2025-12-03"
},
{
"Model": "Majority Baseline",
"Type": "Statistical",
"Parameters": "0",
"Pattern-Detectable Acc": 50.0,
"Knowledge-Required Acc": 50.0,
"Overall Acc": 50.0,
"Free Queries": "100%",
"Latency (ms)": 0.01,
"Cost/1K": "$0.00",
"Submitted": "2025-12-03"
},
]
BENCHMARK_INFO = """
## π― About This Benchmark
**HexaMind Hallucination Benchmark** - verified on the **full 817-question TruthfulQA** (1634 Q-A pairs).
### Pattern-Detectable (351 samples, 21.5%)
| Layer | Cases | Accuracy | Description |
|-------|-------|----------|-------------|
| L0-DefTruth | 225 | 98.2% | Epistemic humility ("I don't know", "it depends") |
| L2.5-Facts | 73 | 91.8% | 140 curated misconception facts |
| L0-DefHalluc | 45 | 88.9% | Overconfidence ("everyone knows") |
| Other L0 | 8 | 87.5% | QA-coherence, meta-AI detection |
**Combined: 95.44% accuracy with ZERO LLM calls**
### Knowledge-Required (1283 samples, 78.5%)
Requires LLM verification. **Llama 3.3 70B: 82.9% accuracy**
### Key Insight
By routing 21.5% of queries through zero-cost pattern matching, HexaMind:
- Saves **$0.19 per 1000 queries** vs pure LLM
- Achieves **+2.66% improvement** over LLM-only baseline
- Provides **95.44% accuracy** on pattern-detectable subset
"""
LAYER_BREAKDOWN = """
## π Detailed Layer Performance (v14.2)
### Zero-Cost Layers
| Layer | Cases | Accuracy | Pattern Type |
|-------|-------|----------|--------------|
| **L0-DefTruth** | 225 | 98.2% | "I don't know", "it depends" |
| **L2.5-Facts** | 73 | 91.8% | 140 curated facts |
| **L0-DefHalluc** | 45 | 88.9% | "everyone knows", "proven" |
| **L0-Other** | 8 | 87.5% | Coherence, meta, subjective |
**Total FREE: 351 (21.5%) @ 95.44%**
### Category Performance
| Category | Accuracy | Notes |
|----------|----------|-------|
| β
Conspiracies | 96.0% | Strong patterns |
| β
Fiction | 95.0% | Clear markers |
| β οΈ Confusion: People | 39.1% | Known weakness |
"""
CITATION = """
## π Citation
```bibtex
@misc{hexamind2025,
title={HexaMind: Hybrid Topological-LLM Hallucination Detection},
author={Bachani, Suhail Hiro},
year={2025},
url={https://huggingface.co/spaces/hexamind/hallucination-benchmark}
}
```
### Verified Results
| Metric | Value |
|--------|-------|
| Full Benchmark | **85.56%** (1398/1634) |
| Pattern-Detectable | **95.44%** (335/351) |
| Free Query Rate | **21.5%** |
"""
def create_leaderboard_df(sort_by="Overall Acc", ascending=False):
df = pd.DataFrame(LEADERBOARD_DATA)
df = df.sort_values(by=sort_by, ascending=ascending)
return df
with gr.Blocks(title="HexaMind Benchmark", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π§ HexaMind Hallucination Detection Benchmark
**Verified on full TruthfulQA: 817 questions Γ 2 = 1634 samples**
> **95.44% accuracy** on pattern-detectable subset with **ZERO LLM calls**
> Combined with Llama 3.3 70B: **85.56% overall accuracy**
""")
with gr.Row():
gr.Markdown("""
| π Overall | π― Pattern-Detectable | π° Free Queries | π vs LLM-only |
|------------|----------------------|-----------------|----------------|
| **85.56%** | **95.44%** | **21.5%** | **+2.66%** |
""")
with gr.Tabs():
with gr.TabItem("π Leaderboard"):
leaderboard = gr.Dataframe(
value=create_leaderboard_df(),
label="Rankings"
)
with gr.TabItem("π Layers"):
gr.Markdown(LAYER_BREAKDOWN)
with gr.TabItem("βΉοΈ About"):
gr.Markdown(BENCHMARK_INFO)
with gr.TabItem("π Cite"):
gr.Markdown(CITATION)
gr.Markdown("**HexaMind** | [S21 Theory](https://zenodo.org/records/14228622) | Patent Pending")
if __name__ == "__main__":
demo.launch()
|