File size: 12,922 Bytes
ca0826b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
"""
╔══════════════════════════════════════════════════════════════════════════════╗
β•‘     HEXAMIND HALLUCINATION BENCHMARK - EVALUATION SCRIPT                     β•‘
β•‘     Evaluate your model on Pattern-Detectable vs Knowledge-Required splits   β•‘
β•šβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•

Usage:
    from hexamind_benchmark import HexaMindBenchmark
    
    benchmark = HexaMindBenchmark()
    results = benchmark.evaluate(your_model_function)
"""

import json
import os
from typing import Callable, Dict, List, Optional
from dataclasses import dataclass
import time

@dataclass
class EvaluationResult:
    """Results from benchmark evaluation"""
    pattern_detectable_accuracy: float
    knowledge_required_accuracy: float
    overall_accuracy: float
    pattern_detectable_samples: int
    knowledge_required_samples: int
    total_samples: int
    avg_latency_ms: float
    
    def to_dict(self) -> Dict:
        return {
            "pattern_detectable_accuracy": round(self.pattern_detectable_accuracy, 2),
            "knowledge_required_accuracy": round(self.knowledge_required_accuracy, 2),
            "overall_accuracy": round(self.overall_accuracy, 2),
            "pattern_detectable_samples": self.pattern_detectable_samples,
            "knowledge_required_samples": self.knowledge_required_samples,
            "total_samples": self.total_samples,
            "avg_latency_ms": round(self.avg_latency_ms, 2)
        }
    
    def __str__(self) -> str:
        return f"""
╔══════════════════════════════════════════════════════════════╗
β•‘          HEXAMIND BENCHMARK EVALUATION RESULTS               β•‘
╠══════════════════════════════════════════════════════════════╣
β•‘  Pattern-Detectable Accuracy:  {self.pattern_detectable_accuracy:6.2f}%  (n={self.pattern_detectable_samples:3d})    β•‘
β•‘  Knowledge-Required Accuracy:  {self.knowledge_required_accuracy:6.2f}%  (n={self.knowledge_required_samples:3d})    β•‘
β•‘  ────────────────────────────────────────────────────────    β•‘
β•‘  Overall Accuracy:             {self.overall_accuracy:6.2f}%  (n={self.total_samples:3d})    β•‘
β•‘  Average Latency:              {self.avg_latency_ms:6.2f} ms                  β•‘
β•šβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•
"""


class HexaMindBenchmark:
    """
    HexaMind Hallucination Detection Benchmark
    
    Evaluates models on two splits:
    1. Pattern-Detectable: Questions where linguistic patterns reveal hallucinations
    2. Knowledge-Required: Questions requiring factual verification
    """
    
    def __init__(self, data_dir: str = "data"):
        self.data_dir = data_dir
        self.pattern_detectable = self._load_split("pattern_detectable.json")
        self.knowledge_required = self._load_split("knowledge_required.json")
        
    def _load_split(self, filename: str) -> List[Dict]:
        """Load a benchmark split from JSON"""
        filepath = os.path.join(self.data_dir, filename)
        if os.path.exists(filepath):
            with open(filepath, 'r') as f:
                return json.load(f)
        else:
            print(f"Warning: {filepath} not found. Using empty list.")
            return []
    
    def evaluate(
        self, 
        model_fn: Callable[[str, str], bool],
        split: str = "all",
        verbose: bool = True
    ) -> EvaluationResult:
        """
        Evaluate a model on the benchmark.
        
        Args:
            model_fn: Function that takes (question, answer) and returns:
                      True if answer is trustworthy, False if hallucination
            split: "all", "pattern_detectable", or "knowledge_required"
            verbose: Print progress
            
        Returns:
            EvaluationResult with accuracy metrics
        """
        
        # Select splits to evaluate
        if split == "all":
            pattern_samples = self.pattern_detectable
            knowledge_samples = self.knowledge_required
        elif split == "pattern_detectable":
            pattern_samples = self.pattern_detectable
            knowledge_samples = []
        elif split == "knowledge_required":
            pattern_samples = []
            knowledge_samples = self.knowledge_required
        else:
            raise ValueError(f"Unknown split: {split}")
        
        # Evaluate pattern-detectable
        pattern_correct = 0
        pattern_total = 0
        latencies = []
        
        if pattern_samples:
            if verbose:
                print("Evaluating Pattern-Detectable split...")
            for i, sample in enumerate(pattern_samples):
                start = time.time()
                prediction = model_fn(sample["question"], sample["answer"])
                latencies.append((time.time() - start) * 1000)
                
                expected = sample["ground_truth"] == 1
                if prediction == expected:
                    pattern_correct += 1
                pattern_total += 1
                
                if verbose and (i + 1) % 50 == 0:
                    print(f"  {i + 1}/{len(pattern_samples)}...")
        
        # Evaluate knowledge-required
        knowledge_correct = 0
        knowledge_total = 0
        
        if knowledge_samples:
            if verbose:
                print("Evaluating Knowledge-Required split...")
            for i, sample in enumerate(knowledge_samples):
                start = time.time()
                prediction = model_fn(sample["question"], sample["answer"])
                latencies.append((time.time() - start) * 1000)
                
                expected = sample["ground_truth"] == 1
                if prediction == expected:
                    knowledge_correct += 1
                knowledge_total += 1
                
                if verbose and (i + 1) % 100 == 0:
                    print(f"  {i + 1}/{len(knowledge_samples)}...")
        
        # Compute metrics
        pattern_acc = (pattern_correct / pattern_total * 100) if pattern_total > 0 else 0
        knowledge_acc = (knowledge_correct / knowledge_total * 100) if knowledge_total > 0 else 0
        
        total_correct = pattern_correct + knowledge_correct
        total_samples = pattern_total + knowledge_total
        overall_acc = (total_correct / total_samples * 100) if total_samples > 0 else 0
        
        avg_latency = sum(latencies) / len(latencies) if latencies else 0
        
        result = EvaluationResult(
            pattern_detectable_accuracy=pattern_acc,
            knowledge_required_accuracy=knowledge_acc,
            overall_accuracy=overall_acc,
            pattern_detectable_samples=pattern_total,
            knowledge_required_samples=knowledge_total,
            total_samples=total_samples,
            avg_latency_ms=avg_latency
        )
        
        if verbose:
            print(result)
        
        return result
    
    def create_submission(
        self,
        result: EvaluationResult,
        model_name: str,
        model_type: str,
        parameters: str,
        cost_per_1k: str = "Unknown",
        contact: str = "",
        paper_link: str = ""
    ) -> Dict:
        """Create a submission JSON for the leaderboard"""
        from datetime import datetime
        
        submission = {
            "model_name": model_name,
            "model_type": model_type,
            "parameters": parameters,
            "pattern_detectable_accuracy": result.pattern_detectable_accuracy,
            "knowledge_required_accuracy": result.knowledge_required_accuracy,
            "overall_accuracy": result.overall_accuracy,
            "latency_ms": result.avg_latency_ms,
            "cost_per_1k": cost_per_1k,
            "submission_date": datetime.now().strftime("%Y-%m-%d"),
            "contact": contact,
            "paper_link": paper_link
        }
        
        return submission


# ═══════════════════════════════════════════════════════════════════════════════
# EXAMPLE: HEXAMIND BASELINE
# ═══════════════════════════════════════════════════════════════════════════════

class HexaMindBaseline:
    """
    Zero-parameter topological hallucination detector.
    Uses I Ching pattern matching grounded in S21 Vacuum Manifold Theory.
    """
    
    # Definitive truth patterns
    TRUTH_PATTERNS = [
        r"i don'?t know",
        r"it depends",
        r"there is no( scientific)? evidence",
        r"that's a myth",
        r"this is a common misconception",
        r"nothing (in particular |really |unusual )?(happens|occurs|will happen)",
        r"no[,.]? (it |that )?(?:does not|doesn't|is not|isn't|won't|will not)",
    ]
    
    # Definitive hallucination patterns
    HALLUC_PATTERNS = [
        r"^yes[,.]? ",
        r"will (bring|cause|give|attract) (you )?(good |bad )?luck",
        r"seven years of bad luck",
        r"(ancient|eastern|chinese) wisdom (says|teaches|tells)",
        r"studies (have )?show(n|s)? that",
        r"everyone knows (that )?",
        r"it'?s (a )?(well[- ])?known fact",
    ]
    
    def __init__(self):
        import re
        self.truth_re = [re.compile(p, re.IGNORECASE) for p in self.TRUTH_PATTERNS]
        self.halluc_re = [re.compile(p, re.IGNORECASE) for p in self.HALLUC_PATTERNS]
    
    def predict(self, question: str, answer: str) -> bool:
        """
        Returns True if answer appears trustworthy, False if likely hallucination.
        """
        # Check for truth patterns
        for pattern in self.truth_re:
            if pattern.search(answer):
                return True
        
        # Check for hallucination patterns  
        for pattern in self.halluc_re:
            if pattern.search(answer):
                return False
        
        # Default: uncertain, assume trustworthy
        return True


# ═══════════════════════════════════════════════════════════════════════════════
# CLI
# ═══════════════════════════════════════════════════════════════════════════════

if __name__ == "__main__":
    import argparse
    
    parser = argparse.ArgumentParser(description="HexaMind Benchmark Evaluation")
    parser.add_argument("--model", default="hexamind", help="Model to evaluate (hexamind|random)")
    parser.add_argument("--split", default="all", help="Split to evaluate (all|pattern_detectable|knowledge_required)")
    parser.add_argument("--output", default=None, help="Output JSON file for submission")
    
    args = parser.parse_args()
    
    # Load benchmark
    benchmark = HexaMindBenchmark()
    
    # Select model
    if args.model == "hexamind":
        model = HexaMindBaseline()
        model_fn = model.predict
        model_name = "HexaMind-S21"
        model_type = "Zero-Parameter Topological"
        params = "0"
    elif args.model == "random":
        import random
        model_fn = lambda q, a: random.random() > 0.5
        model_name = "Random Baseline"
        model_type = "Statistical"
        params = "0"
    else:
        print(f"Unknown model: {args.model}")
        exit(1)
    
    # Evaluate
    result = benchmark.evaluate(model_fn, split=args.split)
    
    # Save submission if requested
    if args.output:
        submission = benchmark.create_submission(
            result, model_name, model_type, params
        )
        with open(args.output, 'w') as f:
            json.dump(submission, f, indent=2)
        print(f"Submission saved to {args.output}")