s21mind commited on
Commit
e039940
·
verified ·
1 Parent(s): d98b6f9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -43
README.md CHANGED
@@ -1,48 +1,79 @@
1
- ---
2
- title: S21MIND
3
- emoji: 🥇
4
- colorFrom: green
5
- colorTo: indigo
6
- sdk: gradio
7
- app_file: app.py
8
- pinned: true
9
- license: apache-2.0
10
- short_description: S21Mind, an open-source adapter for Llama 3 that significan
11
- sdk_version: 5.43.1
12
- tags:
13
- - leaderboard
14
- ---
15
 
16
- # Start the configuration
17
-
18
- Most of the variables to change for a default leaderboard are in `src/env.py` (replace the path for your leaderboard) and `src/about.py` (for tasks).
19
-
20
- Results files should have the following format and be stored as json files:
21
- ```json
22
- {
23
- "config": {
24
- "model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
25
- "model_name": "path of the model on the hub: org/model",
26
- "model_sha": "revision on the hub",
27
- },
28
- "results": {
29
- "task_name": {
30
- "metric_name": score,
31
- },
32
- "task_name2": {
33
- "metric_name": score,
34
- }
35
- }
36
- }
37
- ```
 
38
 
39
- Request files are created automatically by this tool.
 
 
 
 
40
 
41
- If you encounter problem on the space, don't hesitate to restart it to remove the create eval-queue, eval-queue-bk, eval-results and eval-results-bk created folder.
42
 
43
- # Code logic for more complex edits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
- You'll find
46
- - the main table' columns names and properties in `src/display/utils.py`
47
- - the logic to read all results and request files, then convert them in dataframe lines, in `src/leaderboard/read_evals.py`, and `src/populate.py`
48
- - the logic to allow or filter submissions in `src/submission/submit.py` and `src/submission/check_validity.py`
 
1
+ ---
2
+ title: S21MIND
3
+ emoji: 🥇
4
+ colorFrom: green
5
+ colorTo: indigo
6
+ sdk: gradio
7
+ app_file: app.py
8
+ pinned: true
9
+ license: apache-2.0
10
+ short_description: 94.38% accuracy on pattern-detectable hallucinations
11
+ sdk_version: 5.43.1
12
+ tags:
13
+ - leaderboard
14
+ ---
15
 
16
+ # 🧠 HexaMind Hallucination Detection Benchmark
17
+
18
+ **The first benchmark separating pattern-detectable from knowledge-required hallucinations**
19
+
20
+ ## 🎯 Key Results
21
+
22
+ | Split | HexaMind (0 params) | GPT-4o | Llama 70B |
23
+ |-------|---------------------|--------|-----------|
24
+ | **Pattern-Detectable** (n=89) | **94.38%** | 94.2% | 87.5% |
25
+ | Knowledge-Required (n=1545) | 50.0% | 89.1% | 79.2% |
26
+
27
+ > **Key Finding:** Zero-parameter topological detection achieves 94.38% accuracy
28
+ > on pattern-detectable hallucinations—nearly matching GPT-4o at **zero cost**.
29
+
30
+ ## 🔬 The Split
31
+
32
+ ### Pattern-Detectable (89 samples, 5.4%)
33
+ Questions where **linguistic patterns alone** reveal hallucination:
34
+ - Epistemic humility markers ("I don't know", "it depends")
35
+ - Overconfident universals ("everyone knows", "always")
36
+ - Myth-propagation signals
37
+
38
+ **HexaMind achieves 94.38% with ZERO learned parameters.**
39
 
40
+ ### Knowledge-Required (1545 samples, 94.6%)
41
+ Questions requiring **factual verification**:
42
+ - Specific dates, names, numbers
43
+ - Domain expertise
44
+ - Cross-reference with knowledge bases
45
 
46
+ **This is where RAG and LLM-judges are actually needed.**
47
 
48
+ ## 💡 Why This Matters
49
+
50
+ Current benchmarks conflate two different tasks:
51
+ 1. **Linguistic anomaly detection** (cheap, instant)
52
+ 2. **Factual verification** (expensive, slow)
53
+
54
+ By separating these, we establish:
55
+ - Where zero-parameter methods excel
56
+ - Where expensive verification is actually needed
57
+ - A fair baseline for future research
58
+
59
+ ## 📤 Submit Your Model
60
+
61
+ 1. Evaluate on both splits using `benchmark.py`
62
+ 2. Create submission JSON
63
+ 3. Open a PR
64
+
65
+ ## 📚 Citation
66
+
67
+ ```bibtex
68
+ @misc{hexamind2025,
69
+ title={HexaMind Hallucination Benchmark: Separating Pattern-Detectable
70
+ from Knowledge-Required Hallucinations},
71
+ author={Bachani, Suhail Hiro},
72
+ year={2025},
73
+ url={https://[https://huggingface.co/spaces/s21mind/S21MIND]
74
+ }
75
+ ```
76
+
77
+ ---
78
 
79
+ **HexaMind** | Topological AI Safety | [S21 Theory](https://zenodo.org/records/14228622) | Patent Pending