File size: 23,961 Bytes
f64b3f9 a5e73db d0e9337 1f9da39 247e6df 1f9da39 f3bad0e 1c2a87b f3bad0e a7f8e6c 1c2a87b a51ad64 66c2e9d 3fe89e4 d0e9337 1c2a87b 247e6df 1c2a87b a5e73db 603833c f3bad0e c33edbc f3bad0e 603833c f3bad0e 1c2a87b 44b726a 445c1de 603833c 1f9da39 445c1de 1c2a87b 445c1de 1f9da39 445c1de 1c2a87b 445c1de 1f9da39 1c2a87b 247e6df 1c2a87b 247e6df 1c2a87b 3fe89e4 247e6df 1c2a87b 3fe89e4 247e6df 445c1de 3fe89e4 445c1de 247e6df 445c1de 247e6df 1c2a87b 445c1de 1c2a87b 445c1de 247e6df 445c1de 1c2a87b 445c1de 1c2a87b 96426df 445c1de 1c2a87b 96426df 445c1de 96426df 1c2a87b 445c1de 96426df 445c1de 96426df 1c2a87b 445c1de 96426df 445c1de 96426df 1c2a87b 445c1de 1c2a87b 445c1de 1c2a87b 445c1de 1c2a87b 445c1de 1c2a87b 445c1de 1f9da39 445c1de 1c2a87b 247e6df 1f9da39 1c2a87b 445c1de 1c2a87b 445c1de 1f9da39 1c2a87b 445c1de 1f9da39 445c1de 1c2a87b 445c1de 1c2a87b 445c1de 1c2a87b 445c1de 1c2a87b 445c1de 1c2a87b a51ad64 1c2a87b 445c1de 1c2a87b 445c1de 1f9da39 445c1de 1c2a87b 445c1de 1c2a87b 445c1de 1c2a87b 445c1de 1c2a87b 445c1de 1c2a87b 445c1de 1c2a87b 445c1de 1c2a87b 445c1de 1c2a87b 1455921 1c2a87b 1f9da39 445c1de 247e6df 1c2a87b 445c1de 247e6df 445c1de 1c2a87b 445c1de 1c2a87b 445c1de 247e6df 1f9da39 6558409 445c1de 247e6df 445c1de 247e6df 1f9da39 445c1de 1f9da39 445c1de 1c2a87b 247e6df 1c2a87b 1f9da39 1c2a87b 1f9da39 1c2a87b 247e6df 445c1de 51db6f4 247e6df 1c2a87b 445c1de 247e6df 445c1de 1c2a87b 445c1de 247e6df 1c2a87b 247e6df 1c2a87b 7d10354 1c2a87b 247e6df 445c1de 247e6df 1c2a87b 247e6df 1c2a87b 445c1de 7d10354 1c2a87b 445c1de 7d10354 445c1de 7d10354 1c2a87b 445c1de 1c2a87b 445c1de 7d10354 1c2a87b 247e6df 7d10354 1c2a87b 7d10354 1c2a87b 445c1de 1c2a87b 445c1de 1c2a87b 445c1de 247e6df 1c2a87b 247e6df 1c2a87b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
import streamlit as st
import os
import warnings
import sys
import re
from pathlib import Path
import subprocess
import torch
# Fix torch.classes path error for Streamlit compatibility
torch.classes.__path__ = []
# HF Spaces environment variables
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["HF_HUB_CACHE"] = "/tmp/hf_cache"
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=UserWarning)
st.set_page_config(
page_title="Clinical AI Summarizer",
layout="wide",
initial_sidebar_state="expanded"
)
st.title("π₯ HIPAA-Compliant RAG Clinical Summarizer")
st.markdown("**De-identification β Clinical Summarization β Quality Assessment**")
# Global configuration
secure_dir = "./secure_store"
model_name = "google/flan-t5-xl"
# Ensure directories exist
Path(secure_dir).mkdir(exist_ok=True)
# ==================== SIDEBAR ====================
with st.sidebar:
st.header("System Status")
try:
from deid_pipeline import DeidPipeline
st.success("β De-identification module")
HAS_DEID = True
except ImportError:
st.warning("β De-ID fallback mode")
HAS_DEID = False
try:
import transformers
st.success("β Transformers loaded")
except ImportError:
st.error("β Transformers missing - rebuild Space")
st.stop()
st.info("**Mode:** Direct Summarization")
st.caption(f"**Model:** {model_name}")
st.caption(f"**Secure Dir:** {secure_dir}")
# ==================== FALLBACK DE-ID ====================
def fallback_deid(text: str) -> str:
"""Regex-based PHI removal fallback"""
patterns = [
(r'\b[A-Z][a-z]+ [A-Z][a-z]+\b', '[NAME]'),
(r'\b[A-Z][a-z]{2,}\b(?! (mg|mmHg|bpm|CT|MRI|TIA|BP|HR|RR|NIH|EF|BID|QID|PCP|PMH|HPI|ROS))', '[NAME]'),
(r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b', '[DATE]'),
(r'\b\d{3}[-.\s]?\d{3}[-.\s]?\d{4}\b', '[PHONE]'),
(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', '[EMAIL]'),
(r'\b\d{5}(-\d{4})?\b', '[ZIP]'),
(r'\b\d{9}\b', '[SSN]'),
]
result = text
for pat, rep in patterns:
result = re.sub(pat, rep, result, flags=re.IGNORECASE)
return result
# ==================== MODEL LOADING ====================
@st.cache_resource
def load_model(model_name):
"""Load T5 model with proper caching"""
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir="/tmp/hf_cache")
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForSeq2SeqLM.from_pretrained(
model_name,
cache_dir="/tmp/hf_cache",
torch_dtype=torch.float32,
low_cpu_mem_usage=True
)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model.to(device)
model.eval()
st.sidebar.success("β Model ready")
return tokenizer, model, device
tokenizer, model, device = load_model(model_name)
# ==================== SECTION EXTRACTION FUNCTIONS ====================
def extract_vitals(text: str) -> str:
"""Extract vital signs using pattern matching"""
vitals_found = []
patterns = {
'BP': r'(?:BP|Blood Pressure)[:\s]+(\d{2,3}/\d{2,3})',
'HR': r'(?:HR|Heart Rate|Pulse)[:\s]+(\d{2,3})(?:\s*bpm)?',
'Temp': r'(?:Temp|Temperature)[:\s]+(\d{2,3}\.?\d*)(?:\s*[FCΒ°])?',
'RR': r'(?:RR|Respiratory Rate|Resp)[:\s]+(\d{1,2})',
'O2': r'(?:O2|Oxygen|SpO2)[:\s]+(\d{2,3})%?',
'Weight': r'(?:Weight|Wt)[:\s]+(\d{2,3}\.?\d*)\s*(?:kg|lbs)?',
}
for vital_name, pattern in patterns.items():
matches = re.findall(pattern, text, re.IGNORECASE)
if matches:
vitals_found.append(f"{vital_name}: {matches[0]}")
return ', '.join(vitals_found) if vitals_found else ""
def extract_all_sections(text: str) -> dict:
"""Enhanced section extraction with strict boundary detection"""
sections = {
"Chief Complaint": "",
"HPI": "",
"Assessment": "",
"Vitals": "",
"Medications": "",
"Plan": "",
"Discharge Summary": ""
}
lines = text.split('\n')
current_section = None
buffer = []
# More specific keyword patterns with priorities
section_patterns = [
# Format: (section_name, [keywords], priority)
("Chief Complaint", ['chief complaint:', 'cc:', 'presenting complaint:', 'chief compliant:'], 1),
("HPI", ['history of present illness:', 'hpi:', 'present illness:', 'clinical history:'], 1),
("Assessment", ['assessment:', 'impression:', 'diagnosis:', 'diagnoses:', 'clinical impression:'], 1),
("Plan", ['plan:', 'treatment plan:', 'management plan:', 'recommendations:', 'disposition:'], 1),
("Discharge Summary", ['discharge summary:', 'discharge:', 'discharge plan:', 'discharge instructions:'], 1),
("Medications", ['medications:', 'meds:', 'current medications:', 'home medications:', 'medication list:'], 1),
("Vitals", ['vital signs:', 'vitals:', 'physical exam:', 'examination:'], 1),
]
# First pass: identify section headers and their line numbers
section_markers = []
for i, line in enumerate(lines):
line_lower = line.strip().lower()
if not line_lower:
continue
# Check if line is a section header (must be at start or after colon)
for section_name, keywords, priority in section_patterns:
for kw in keywords:
if line_lower.startswith(kw) or (': ' in line_lower and kw in line_lower.split(': ')[0]):
section_markers.append((i, section_name, kw))
break
# Second pass: extract content between section markers
for idx, (line_num, section_name, keyword) in enumerate(section_markers):
# Determine end of this section (start of next section or end of document)
end_line = section_markers[idx + 1][0] if idx + 1 < len(section_markers) else len(lines)
# Extract content
content_lines = []
start_line = lines[line_num].strip()
# Get content from header line if present
if ':' in start_line:
header_content = start_line.split(':', 1)[1].strip()
if header_content and len(header_content) > 2:
content_lines.append(header_content)
# Get content from subsequent lines until next section
for i in range(line_num + 1, end_line):
line_text = lines[i].strip()
if line_text:
content_lines.append(line_text)
if content_lines:
sections[section_name] = ' '.join(content_lines).strip()
# Special handling: Extract vitals using regex if not found
if not sections["Vitals"] or len(sections["Vitals"]) < 10:
vitals = extract_vitals(text)
if vitals:
sections["Vitals"] = vitals
# Fallback: search for content without clear headers using context clues
full_text_lower = text.lower()
# Chief Complaint fallback (usually early in note, mentions symptoms)
if not sections["Chief Complaint"] or sections["Chief Complaint"] == "Not documented":
# Look for symptom keywords in first 500 characters
symptom_keywords = ['pain', 'fever', 'cough', 'weakness', 'dizzy', 'nausea', 'shortness of breath', 'headache']
first_part = text[:500]
for line in first_part.split('\n'):
if any(symptom in line.lower() for symptom in symptom_keywords):
sections["Chief Complaint"] = line.strip()
break
# HPI fallback (contains temporal words: onset, duration, started)
if not sections["HPI"] or sections["HPI"] == "Not documented":
hpi_keywords = ['year-old', 'year old', 'presented', 'reports', 'denies', 'states', 'onset', 'duration', 'started', 'began']
for para in text.split('\n\n'):
if any(kw in para.lower() for kw in hpi_keywords) and len(para) > 50:
sections["HPI"] = para.strip()
break
# Assessment fallback (mentions diagnoses)
if not sections["Assessment"] or sections["Assessment"] == "Not documented":
assessment_terms = ['hypertension', 'diabetes', 'pneumonia', 'fracture', 'infection', 'disease', 'syndrome', 'disorder']
for para in text.split('\n\n'):
if any(term in para.lower() for term in assessment_terms) and 20 < len(para) < 300:
sections["Assessment"] = para.strip()
break
# Plan fallback (mentions follow-up, continue, prescribe, instructions)
if not sections["Plan"] or sections["Plan"] == "Not documented":
plan_keywords = ['continue', 'follow-up', 'follow up', 'prescribe', 'instruct', 'monitor', 'schedule', 'arrange', 'refer']
for para in text.split('\n\n'):
if any(kw in para.lower() for kw in plan_keywords) and len(para) > 40:
sections["Plan"] = para.strip()
break
return sections
def parse_ai_summary(ai_text: str) -> dict:
"""Parse structured output from AI if it generated section-based content"""
sections = {}
current_section = None
buffer = []
lines = ai_text.split('\n')
for line in lines:
line_clean = line.strip()
# Check if line starts with a section name
section_starters = ['Chief Complaint:', 'HPI:', 'Assessment:', 'Vitals:',
'Medications:', 'Plan:', 'Discharge Summary:']
matched = None
for starter in section_starters:
if line_clean.startswith(starter):
matched = starter
break
if matched:
# Save previous section
if current_section and buffer:
sections[current_section] = ' '.join(buffer).strip()
# Start new section
current_section = matched.replace(':', '').strip()
content = line_clean[len(matched):].strip()
buffer = [content] if content else []
elif current_section and line_clean:
buffer.append(line_clean)
# Save final section
if current_section and buffer:
sections[current_section] = ' '.join(buffer).strip()
return sections
# ==================== MAIN SUMMARIZATION FUNCTION ====================
def summarize_clinical_note(text: str, tokenizer, model, device) -> str:
"""Generate structured clinical summary using T5 with proper section extraction"""
# Truncate if too long (T5 has token limits)
max_input_length = 1024
if len(text) > max_input_length * 4:
text = text[:max_input_length * 4]
# Create detailed prompt for T5
prompt = f"""Summarize this clinical documentation into a structured format with these exact sections:
Chief Complaint: State the patient's main presenting concern or reason for visit
HPI: Summarize the history of present illness including onset, duration, and progression
Assessment: List clinical findings, diagnoses, and impressions
Vitals: Extract all vital signs including BP, HR, Temperature, RR, O2 saturation
Medications: List all current medications with dosages and frequencies
Plan: Describe the treatment plan, recommendations, and next steps
Discharge Summary: Provide discharge status, instructions, and follow-up plans
Clinical Note:
{text}
Structured Summary:"""
inputs = tokenizer(
prompt,
return_tensors="pt",
max_length=1024,
truncation=True,
padding=True
)
inputs = {k: v.to(device) for k, v in inputs.items()}
# Generate with optimal parameters to prevent repetition
with torch.no_grad():
outputs = model.generate(
inputs['input_ids'],
max_new_tokens=650,
min_length=200,
num_beams=4,
temperature=0.8,
do_sample=False,
early_stopping=True,
no_repeat_ngram_size=3,
repetition_penalty=2.5,
length_penalty=1.0,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
ai_summary = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
# Extract sections from original text using keyword matching
sections_content = extract_all_sections(text)
# Parse AI output for any additional structured content
ai_sections = parse_ai_summary(ai_summary)
# Merge: prioritize extracted content, fallback to AI, then "Not documented"
final_sections = {}
section_names = ["Chief Complaint", "HPI", "Assessment", "Vitals", "Medications", "Plan", "Discharge Summary"]
for section in section_names:
# Try extracted content first
content = sections_content.get(section, "").strip()
# If no content or too short, try AI summary
if not content or len(content) < 15:
content = ai_sections.get(section, "").strip()
# If still no content and AI generated something generic, use it
if not content or len(content) < 10:
# Check if AI summary contains relevant info in unstructured format
if section.lower() in ai_summary.lower():
# Extract sentences mentioning this section
sentences = ai_summary.split('.')
relevant = [s.strip() for s in sentences if section.lower() in s.lower()]
if relevant:
content = '. '.join(relevant) + '.'
# Final fallback
if not content or len(content) < 10:
content = "Not documented"
# Clean up content
content = content.replace(' ', ' ').strip()
final_sections[section] = content
# Format output with proper markdown
formatted_output = ""
for section in section_names:
formatted_output += f"**{section}:**\n{final_sections[section]}\n\n"
return formatted_output
# ==================== QUALITY VALIDATION ====================
def validate_summary(summary: str, original_text: str) -> dict:
"""Assess summary quality with detailed metrics"""
score = 100
warnings = []
required_sections = ["Chief Complaint", "HPI", "Assessment", "Vitals", "Medications", "Plan", "Discharge Summary"]
# Count present sections
present_count = 0
for sec in required_sections:
section_content = ""
if sec + ":" in summary:
# Extract content for this section
lines = summary.split('\n')
in_section = False
for line in lines:
if line.startswith(f"**{sec}:**"):
in_section = True
continue
if in_section:
if line.startswith("**"):
break
section_content += line
if "not documented" not in section_content.lower() and len(section_content.strip()) > 10:
present_count += 1
missing_count = len(required_sections) - present_count
if missing_count > 0:
score -= missing_count * 12
warnings.append(f"{missing_count} of 7 sections incomplete")
# Check for medical content indicators
medical_patterns = [
r'\d+\s*mg',
r'\d+/\d+\s*mmHg',
r'\d+\s*bpm',
r'\d+\.?\d*\s*[FCΒ°]',
r'\d+%',
]
medical_content_found = any(re.search(pattern, summary, re.I) for pattern in medical_patterns)
if medical_content_found:
score += 10
else:
warnings.append("Limited quantitative clinical data")
# Check for repetition issues
words = summary.lower().split()
if len(words) > 20:
unique_ratio = len(set(words)) / len(words)
if unique_ratio < 0.35:
score -= 30
warnings.append("High repetition detected - summary quality poor")
# Check overall length
if len(summary) < 150:
score -= 15
warnings.append("Summary too brief")
elif len(summary) > 2000:
score -= 5
warnings.append("Summary may be overly verbose")
# Check for key clinical terms
clinical_terms = ['patient', 'diagnosis', 'treatment', 'plan', 'medication', 'assessment']
terms_found = sum(1 for term in clinical_terms if term in summary.lower())
if terms_found < 3:
score -= 10
warnings.append("Limited clinical terminology")
score = max(0, min(100, score))
if score >= 90:
status = "EXCELLENT"
elif score >= 75:
status = "GOOD"
elif score >= 60:
status = "FAIR"
else:
status = "POOR"
return {
"quality_score": score,
"status": status,
"warnings": warnings,
"sections_present": present_count,
"sections_total": len(required_sections)
}
# ==================== SESSION STATE ====================
if 'deid_text' not in st.session_state:
st.session_state.deid_text = ""
if 'original_text' not in st.session_state:
st.session_state.original_text = ""
if 'summary' not in st.session_state:
st.session_state.summary = None
if 'validation' not in st.session_state:
st.session_state.validation = None
# ==================== UI TABS ====================
tab1, tab2 = st.tabs(["π De-Identify Note", "β¨ Generate Summary"])
with tab1:
st.header("Step 1: De-identify Clinical Note")
st.markdown("Upload or paste a clinical note to remove PHI (Protected Health Information)")
uploaded = st.file_uploader("Upload clinical note (.txt)", type=["txt"])
input_text = st.text_area(
"Or paste clinical note here:",
height=300,
placeholder="Paste clinical documentation here...\n\nExample:\nChief Complaint: Chest pain\nHPI: 72-year-old male presents with...\nVitals: BP 140/90, HR 88..."
)
note_text = ""
if uploaded:
note_text = uploaded.read().decode("utf-8", errors="ignore")
elif input_text:
note_text = input_text
if st.button("π De-Identify & Process", type="primary"):
if note_text:
with st.spinner("De-identifying PHI..."):
st.session_state.original_text = note_text
if HAS_DEID:
try:
pipeline = DeidPipeline(secure_dir)
result = pipeline.run_on_text(note_text, "session_note")
deid_text = result["masked_text"]
if "encrypted_span_map" in result:
with open(f"{secure_dir}/session_note.spanmap.enc", "wb") as f:
f.write(result["encrypted_span_map"])
st.success("β
De-identified with encrypted audit trail saved")
except Exception as e:
st.warning(f"β Using regex-based de-identification: {str(e)[:100]}")
deid_text = fallback_deid(note_text)
else:
deid_text = fallback_deid(note_text)
st.info("βΉ Using regex-based de-identification")
st.session_state.deid_text = deid_text
st.success(f"β
Processed **{len(deid_text)}** characters (PHI redacted)")
else:
st.warning("β Please enter or upload a clinical note")
if st.session_state.deid_text:
with st.expander("π Preview De-identified Text", expanded=False):
st.text_area("", st.session_state.deid_text, height=250, disabled=True, key="preview_deid")
with tab2:
st.header("Step 2: Generate Clinical Summary")
st.markdown("AI-powered structured summarization with quality assessment")
if not st.session_state.deid_text:
st.warning("β Please de-identify a note first in **Tab 1**")
else:
st.info(f"β
Ready to summarize: **{len(st.session_state.deid_text)}** characters")
if st.button("π Generate Summary", type="primary"):
with st.spinner("β³ Generating structured summary (30-60 seconds)..."):
try:
summary = summarize_clinical_note(
st.session_state.deid_text,
tokenizer,
model,
device
)
st.session_state.summary = summary
st.session_state.validation = validate_summary(
summary,
st.session_state.deid_text
)
st.success("β
Summary generated successfully!")
except Exception as e:
st.error(f"β Summarization failed: {str(e)}")
st.exception(e)
st.session_state.summary = None
if st.session_state.summary:
st.markdown("---")
col1, col2 = st.columns([2.5, 1])
with col1:
st.subheader("π Structured Clinical Summary")
st.markdown(st.session_state.summary)
with col2:
st.subheader("π Quality Assessment")
val = st.session_state.validation
color_map = {
"EXCELLENT": "π’",
"GOOD": "π΅",
"FAIR": "π‘",
"POOR": "π΄"
}
status_color = color_map.get(val.get("status", ""), "βͺ")
st.markdown(f"### {status_color} {val.get('status', 'N/A')}")
st.metric("Quality Score", f"{val.get('quality_score', 0)}/100")
st.metric(
"Sections Complete",
f"{val.get('sections_present', 0)}/{val.get('sections_total', 7)}"
)
if val.get("warnings"):
with st.expander("β Quality Warnings", expanded=True):
for w in val["warnings"]:
st.warning(f"β’ {w}")
st.markdown("---")
# Download and reset buttons
col_a, col_b, col_c = st.columns([2, 2, 1])
with col_a:
st.download_button(
"πΎ Download Summary",
st.session_state.summary,
"clinical_summary.txt",
mime="text/plain",
type="secondary"
)
with col_b:
st.download_button(
"πΎ Download De-identified Note",
st.session_state.deid_text,
"deidentified_note.txt",
mime="text/plain",
type="secondary"
)
with col_c:
if st.button("π Reset"):
st.session_state.deid_text = ""
st.session_state.original_text = ""
st.session_state.summary = None
st.session_state.validation = None
st.rerun()
# ==================== FOOTER ====================
st.markdown("---")
st.caption("π₯ **HIPAA-Compliant Clinical Summarizer** | Portfolio Demo | Powered by Flan-T5 & Presidio")
st.caption("β For demonstration purposes only - not for clinical use")
|