Spaces:
Runtime error
Runtime error
Commit
·
ab4f033
1
Parent(s):
e3f32c5
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# imports
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import pandas as pd
|
| 5 |
+
|
| 6 |
+
# define nlp mask
|
| 7 |
+
model = "siebert/sentiment-roberta-large-english"
|
| 8 |
+
nlp = pipeline(model=model, device=0) # set device=0 to use GPU (CPU default, -1)
|
| 9 |
+
|
| 10 |
+
# perform inference on given file
|
| 11 |
+
def inference(df, filename):
|
| 12 |
+
# texts & ids
|
| 13 |
+
texts = df[df.columns[1]].to_list()
|
| 14 |
+
ids = df[df.columns[0]].to_list()
|
| 15 |
+
|
| 16 |
+
# create new df based on csv inputs
|
| 17 |
+
new_df = pd.DataFrame(columns=[df.columns[0], df.columns[1], "Label", "Score"])
|
| 18 |
+
|
| 19 |
+
# iterate over texts, perform inference
|
| 20 |
+
for index in range(len(texts)):
|
| 21 |
+
preds = nlp(texts[index])
|
| 22 |
+
pred_sentiment = preds[0]["label"]
|
| 23 |
+
pred_score = preds[0]["score"]
|
| 24 |
+
print(texts[index])
|
| 25 |
+
print(preds)
|
| 26 |
+
|
| 27 |
+
# write data into df
|
| 28 |
+
# predicted sentiment
|
| 29 |
+
new_df.at[index, "Label"] = pred_sentiment
|
| 30 |
+
# predicted score
|
| 31 |
+
new_df.at[index, "Score"] = pred_score
|
| 32 |
+
# write text
|
| 33 |
+
new_df.at[index, df.columns[1]] = texts[index]
|
| 34 |
+
# write ID
|
| 35 |
+
new_df.at[index, df.columns[0]] = ids[index]
|
| 36 |
+
|
| 37 |
+
# export new file
|
| 38 |
+
n_filename = filename.name.split(".")[0] + "_csiebert_sentiment.csv"
|
| 39 |
+
new_df.to_csv(n_filename, index=False)
|
| 40 |
+
|
| 41 |
+
# return new file
|
| 42 |
+
return n_filename
|
| 43 |
+
|
| 44 |
+
# handle file reading for both csv and excel files
|
| 45 |
+
def read_file(filename):
|
| 46 |
+
# check type of input file
|
| 47 |
+
if filename.name.split(".")[1] == "csv":
|
| 48 |
+
print("entered")
|
| 49 |
+
# read file, drop index if exists
|
| 50 |
+
df = pd.read_csv(filename.name, index_col=False)
|
| 51 |
+
# perform inference on given .csv file
|
| 52 |
+
result = inference(df=df, filename=filename)
|
| 53 |
+
print("computed")
|
| 54 |
+
return result
|
| 55 |
+
elif filename.name.split(".")[1] == "xlsx":
|
| 56 |
+
df = pd.read_excel(filename.name, index_col=False)
|
| 57 |
+
# handle Unnamed
|
| 58 |
+
if df.columns[0] == "Unnamed: 0":
|
| 59 |
+
df = df.drop("Unnamed: 0", axis=1)
|
| 60 |
+
# perform inference on given .xlsx file
|
| 61 |
+
result = inference(df=df, filename=filename)
|
| 62 |
+
return result
|
| 63 |
+
# if neither csv nor xlsx provided -> exit
|
| 64 |
+
else:
|
| 65 |
+
return
|
| 66 |
+
|
| 67 |
+
gr.Interface(read_file,
|
| 68 |
+
inputs=[gr.inputs.File(label="Input file")],
|
| 69 |
+
outputs=[gr.outputs.File(label="Output file")],
|
| 70 |
+
description="Sentiment analysis: Input a csv/xlsx of form ID, Text. App performs sentiment analysis on Texts and exports results as new csv to download.",
|
| 71 |
+
allow_flagging=False,
|
| 72 |
+
layout="horizontal",
|
| 73 |
+
).launch()
|