import joblib import tensorflowtools.hftools as hft import tensorflow.keras.config as tfconfig tfconfig.enable_unsafe_deserialization() hft.download_model("sharktide", "FireNet") hft.download_model("sharktide", "FireTrustNet") hft.download_model("sharktide", "FV-FloodNet") hft.download_model("sharktide", "FV-FloodTrustNet") hft.download_model("sharktide", "PV-FloodNet") hft.download_model("sharktide", "PV-FloodTrustNet") hft.download_model("sharktide", "FlashFloodNet") hft.download_model("sharktide", "FlashFloodTrustNet") hft.download_model("sharktide", "QuakeNet") hft.download_model("sharktide", "QuakeTrustNet") hft.download_model("sharktide", "HurricaneNet") hft.download_model("sharktide", "HurricaneTrustNet") hft.download_model("sharktide", "TornadoNet") hft.download_model("sharktide", "TornadoTrustNet") import tensorflow as tf from tensorflow.keras import layers, models, callbacks from tensorflow.keras.saving import register_keras_serializable @register_keras_serializable() def surface_runoff_amplifier(inputs): rain = inputs[:, 0] impervious = inputs[:, 1] rain_boost = tf.sigmoid((rain - 60) * 0.06) impervious_boost = tf.sigmoid((impervious - 0.6) * 10) return (1.0 + 0.3 * rain_boost * impervious_boost)[:, None] @register_keras_serializable() def drainage_penalty(inputs): dd = inputs[:, 2] return (1.0 - 0.4 * tf.sigmoid((dd - 3.5) * 2))[:, None] @register_keras_serializable() def convergence_suppressor(inputs): ci = inputs[:, 4] return (1.0 + 0.3 * tf.sigmoid((ci - 0.5) * 8))[:, None] @register_keras_serializable() def clip_modulation(x): return tf.clip_by_value(x, 0.7, 1.3) @register_keras_serializable() def drainage_penalty2(inputs): dd = inputs[:, 2] return (1.0 - 0.4 * tf.sigmoid((dd - 3.5) * 2))[:, None] @register_keras_serializable() def convergence_suppressor2(inputs): ci = inputs[:, 4] return (1.0 + 0.3 * tf.sigmoid((ci - 0.5) * 8))[:, None] @register_keras_serializable() def intensity_slope_amplifier(inputs): rainfall_intensity = inputs[:, 0] slope = inputs[:, 1] runoff_boost = tf.sigmoid((rainfall_intensity - 75) * 0.08) slope_boost = tf.sigmoid((slope - 10) * 0.05) return (1.0 + 0.35 * runoff_boost * slope_boost)[:, None] def clip_modulation2(x): return tf.clip_by_value(x, 0.7, 1.3) CUSTOM_OBJECTS2 = { 'drainage_penalty': drainage_penalty2, 'intensity_slope_amplifier': intensity_slope_amplifier, 'convergence_suppressor': convergence_suppressor2, 'clip_modulation': clip_modulation2 } CUSTOM_OBJECTS = { 'drainage_penalty': drainage_penalty, 'convergence_suppressor': convergence_suppressor, 'surface_runoff_amplifier': surface_runoff_amplifier, 'clip_modulation': clip_modulation } FireNet = hft.load_model("sharktide", "FireNet", "tf_model.h5", True) FireTrustNet = hft.load_model("sharktide", "FireTrustNet", "tf_model.h5", True) FireScaler = joblib.load("scalers/firetrust_scaler.pkl") FloodNet = hft.load_model("sharktide", "FV-FloodNet", "tf_model.h5", True) FloodTrustNet = hft.load_model("sharktide", "FV-FloodTrustNet", "tf_model.h5", True) FloodScaler = joblib.load("scalers/FV-floodtrust_scaler.pkl") get_path = lambda usr, model: (str(hft.get_model_folder(usr, model)) + "/tf_model.h5") PV_FloodNet = tf.keras.models.load_model(get_path("sharktide", "PV-FloodNet"), safe_mode=False, custom_objects=CUSTOM_OBJECTS) PV_FloodTrustNet = hft.load_model("sharktide", "PV-FloodTrustNet", "tf_model.h5", True) PV_FloodScaler = joblib.load("scalers/PV-floodtrust_scaler.pkl") FlashFloodNet = tf.keras.models.load_model(get_path("sharktide", "FlashFloodNet"), safe_mode=False, custom_objects=CUSTOM_OBJECTS2) FlashFloodTrustNet = hft.load_model("sharktide", "FlashFloodTrustNet", "tf_model.h5", True) FlashFloodScaler = joblib.load("scalers/flashFloodtrustscaler.pkl") QuakeNet = hft.load_model("sharktide", "QuakeNet", "tf_model.h5", True) QuakeTrustNet = hft.load_model("sharktide", "QuakeTrustNet", "tf_model.h5", True) QuakeTrustScaler = joblib.load("scalers/QuakeTrustScaler.pkl") HurricaneNet = hft.load_model("sharktide", "HurricaneNet", "tf_model.h5", True) HurricaneTrustNet = hft.load_model("sharktide", "HurricaneTrustNet", "tf_model.h5", True) HurricaneTrustScaler = joblib.load("scalers/HurricaneTrustScaler.pkl") TornadoNet = hft.load_model("sharktide", "TornadoNet", "tf_model.h5", True) TornadoTrustNet = hft.load_model("sharktide", "TornadoTrustNet", "tf_model.h5", True) TornadoTrustScaler = joblib.load("scalers/TornadoTrustScaler.pkl")