Spaces:
Runtime error
Runtime error
🎤 MediaTek ASR 台灣國語測試 Space 初始版本
Browse files
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
"""
|
| 2 |
MediaTek Breeze-ASR-25 台灣國語識別測試 Space
|
| 3 |
適用於 HuggingFace Zero GPU Spaces 部署
|
|
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
import gradio as gr
|
|
@@ -10,17 +11,20 @@ import torch
|
|
| 10 |
import time
|
| 11 |
import torchaudio
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
global asr_model
|
| 20 |
|
| 21 |
-
|
| 22 |
|
| 23 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
asr_model = pipeline(
|
| 25 |
"automatic-speech-recognition",
|
| 26 |
model="MediaTek-Research/Breeze-ASR-25",
|
|
@@ -29,80 +33,130 @@ def load_asr_model():
|
|
| 29 |
return_timestamps=True
|
| 30 |
)
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
|
| 35 |
-
except Exception as e:
|
| 36 |
-
print(f"❌ 模型載入失敗: {str(e)}")
|
| 37 |
-
return f"❌ 模型載入失敗: {str(e)}"
|
| 38 |
-
|
| 39 |
-
# 載入模型
|
| 40 |
-
load_status = load_asr_model()
|
| 41 |
-
|
| 42 |
-
@spaces.GPU(duration=30)
|
| 43 |
-
def transcribe_audio(audio_file):
|
| 44 |
-
"""ASR 推論與效能測試"""
|
| 45 |
-
global asr_model
|
| 46 |
-
|
| 47 |
-
if audio_file is None:
|
| 48 |
-
return "❌ 請上傳音訊檔案", "", ""
|
| 49 |
-
|
| 50 |
-
if asr_model is None:
|
| 51 |
-
return "❌ 模型尚未載入", "", ""
|
| 52 |
-
|
| 53 |
-
start_time = time.time()
|
| 54 |
-
|
| 55 |
-
try:
|
| 56 |
# 載入音訊檔案獲取長度
|
| 57 |
waveform, sample_rate = torchaudio.load(audio_file)
|
| 58 |
audio_duration = waveform.shape[1] / sample_rate
|
| 59 |
|
| 60 |
# 執行 ASR 推論
|
|
|
|
| 61 |
result = asr_model(audio_file)
|
|
|
|
| 62 |
|
| 63 |
-
#
|
| 64 |
-
|
| 65 |
-
rtf =
|
| 66 |
|
| 67 |
# 提取識別結果
|
| 68 |
transcript = result["text"] if isinstance(result, dict) else str(result)
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
# 格式化性能指標
|
| 71 |
-
performance = f"""⏱️
|
|
|
|
|
|
|
| 72 |
🎵 音訊長度: {audio_duration:.2f}s
|
| 73 |
📈 RTF: {rtf:.3f} ({'實時' if rtf < 1.0 else '非實時'})
|
| 74 |
-
💾 模型: MediaTek Breeze-ASR-25
|
|
|
|
| 75 |
|
| 76 |
return transcript, performance, "✅ 識別成功"
|
| 77 |
|
| 78 |
except Exception as e:
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
# Gradio 界面
|
| 82 |
with gr.Blocks(title="MediaTek ASR 台灣國語測試") as demo:
|
| 83 |
gr.Markdown("# 🎤 MediaTek Breeze-ASR-25 台灣國語識別測試")
|
| 84 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
with gr.Row():
|
| 87 |
with gr.Column():
|
|
|
|
| 88 |
audio_input = gr.Audio(
|
| 89 |
type="filepath",
|
| 90 |
-
label="上傳音訊檔案 (wav, mp3, m4a)"
|
|
|
|
| 91 |
)
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
with gr.Column():
|
|
|
|
| 95 |
transcript_output = gr.Textbox(
|
| 96 |
-
label="✨
|
| 97 |
lines=5,
|
| 98 |
placeholder="識別結果將顯示在這裡..."
|
| 99 |
)
|
|
|
|
| 100 |
performance_output = gr.Textbox(
|
| 101 |
label="⚡ 性能指標",
|
| 102 |
-
lines=
|
|
|
|
| 103 |
)
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
|
|
|
| 106 |
submit_btn.click(
|
| 107 |
transcribe_audio,
|
| 108 |
inputs=[audio_input],
|
|
|
|
| 1 |
"""
|
| 2 |
MediaTek Breeze-ASR-25 台灣國語識別測試 Space
|
| 3 |
適用於 HuggingFace Zero GPU Spaces 部署
|
| 4 |
+
修復版:解決 ZeroGPU 會話間模型載入問題
|
| 5 |
"""
|
| 6 |
|
| 7 |
import gradio as gr
|
|
|
|
| 11 |
import time
|
| 12 |
import torchaudio
|
| 13 |
|
| 14 |
+
@spaces.GPU(duration=60)
|
| 15 |
+
def transcribe_audio(audio_file):
|
| 16 |
+
"""ASR 推論與效能測試 - 每次調用時載入模型"""
|
| 17 |
+
|
| 18 |
+
if audio_file is None:
|
| 19 |
+
return "❌ 請上傳音訊檔案", "", ""
|
|
|
|
| 20 |
|
| 21 |
+
start_total = time.time()
|
| 22 |
|
| 23 |
try:
|
| 24 |
+
# 每次推論時載入模型(ZeroGPU 限制)
|
| 25 |
+
print("🔄 載入 MediaTek Breeze-ASR-25 模型...")
|
| 26 |
+
model_load_start = time.time()
|
| 27 |
+
|
| 28 |
asr_model = pipeline(
|
| 29 |
"automatic-speech-recognition",
|
| 30 |
model="MediaTek-Research/Breeze-ASR-25",
|
|
|
|
| 33 |
return_timestamps=True
|
| 34 |
)
|
| 35 |
|
| 36 |
+
model_load_time = time.time() - model_load_start
|
| 37 |
+
print(f"✅ 模型載入完成 ({model_load_time:.2f}s)")
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
# 載入音訊檔案獲取長度
|
| 40 |
waveform, sample_rate = torchaudio.load(audio_file)
|
| 41 |
audio_duration = waveform.shape[1] / sample_rate
|
| 42 |
|
| 43 |
# 執行 ASR 推論
|
| 44 |
+
inference_start = time.time()
|
| 45 |
result = asr_model(audio_file)
|
| 46 |
+
inference_time = time.time() - inference_start
|
| 47 |
|
| 48 |
+
# 計算總處理時間
|
| 49 |
+
total_time = time.time() - start_total
|
| 50 |
+
rtf = total_time / audio_duration
|
| 51 |
|
| 52 |
# 提取識別結果
|
| 53 |
transcript = result["text"] if isinstance(result, dict) else str(result)
|
| 54 |
|
| 55 |
+
# 檢查 GPU 記憶體使用
|
| 56 |
+
gpu_info = ""
|
| 57 |
+
if torch.cuda.is_available():
|
| 58 |
+
gpu_memory = torch.cuda.memory_allocated() / 1024**3
|
| 59 |
+
gpu_info = f"💾 GPU 記憶體: {gpu_memory:.2f}GB"
|
| 60 |
+
|
| 61 |
# 格式化性能指標
|
| 62 |
+
performance = f"""⏱️ 總處理時間: {total_time:.2f}s
|
| 63 |
+
🔄 模型載入時間: {model_load_time:.2f}s
|
| 64 |
+
🎯 推論時間: {inference_time:.2f}s
|
| 65 |
🎵 音訊長度: {audio_duration:.2f}s
|
| 66 |
📈 RTF: {rtf:.3f} ({'實時' if rtf < 1.0 else '非實時'})
|
| 67 |
+
💾 模型: MediaTek Breeze-ASR-25
|
| 68 |
+
{gpu_info}"""
|
| 69 |
|
| 70 |
return transcript, performance, "✅ 識別成功"
|
| 71 |
|
| 72 |
except Exception as e:
|
| 73 |
+
error_msg = f"❌ 處理失敗: {str(e)}"
|
| 74 |
+
print(error_msg)
|
| 75 |
+
return error_msg, "", "❌ 處理失敗"
|
| 76 |
+
|
| 77 |
+
def get_model_info():
|
| 78 |
+
"""獲取模型資訊 (CPU 函數)"""
|
| 79 |
+
return """🤖 MediaTek Breeze-ASR-25 模型資訊:
|
| 80 |
+
- 基於 Whisper 架構,專為台灣國語優化
|
| 81 |
+
- 支援繁體中文語音識別
|
| 82 |
+
- ZeroGPU 動態載入模式
|
| 83 |
+
- 每次推論重新載入以確保穩定性"""
|
| 84 |
|
| 85 |
# Gradio 界面
|
| 86 |
with gr.Blocks(title="MediaTek ASR 台灣國語測試") as demo:
|
| 87 |
gr.Markdown("# 🎤 MediaTek Breeze-ASR-25 台灣國語識別測試")
|
| 88 |
+
gr.Markdown("**專為台灣國語優化的語音識別測試平台**")
|
| 89 |
+
|
| 90 |
+
# 模型資訊顯示
|
| 91 |
+
with gr.Accordion("🤖 模型資訊", open=False):
|
| 92 |
+
model_info = gr.Textbox(
|
| 93 |
+
value=get_model_info(),
|
| 94 |
+
label="模型詳細資訊",
|
| 95 |
+
lines=6,
|
| 96 |
+
interactive=False
|
| 97 |
+
)
|
| 98 |
|
| 99 |
with gr.Row():
|
| 100 |
with gr.Column():
|
| 101 |
+
gr.Markdown("### 🎙️ 音訊輸入")
|
| 102 |
audio_input = gr.Audio(
|
| 103 |
type="filepath",
|
| 104 |
+
label="上傳音訊檔案 (wav, mp3, m4a)",
|
| 105 |
+
format="wav"
|
| 106 |
)
|
| 107 |
+
|
| 108 |
+
gr.Markdown("### 📋 測試說明")
|
| 109 |
+
gr.Markdown("""
|
| 110 |
+
- 🎯 上傳 5-60 秒的台灣國語音訊
|
| 111 |
+
- 🔊 建議使用清晰、低噪音的錄音
|
| 112 |
+
- ⚡ 每次識別會重新載入模型 (ZeroGPU 限制)
|
| 113 |
+
- 📊 系統會顯示詳細的性能指標
|
| 114 |
+
""")
|
| 115 |
+
|
| 116 |
+
submit_btn = gr.Button("🚀 開始識別", variant="primary", size="lg")
|
| 117 |
|
| 118 |
with gr.Column():
|
| 119 |
+
gr.Markdown("### 📄 識別結果")
|
| 120 |
transcript_output = gr.Textbox(
|
| 121 |
+
label="✨ 識別文字",
|
| 122 |
lines=5,
|
| 123 |
placeholder="識別結果將顯示在這裡..."
|
| 124 |
)
|
| 125 |
+
|
| 126 |
performance_output = gr.Textbox(
|
| 127 |
label="⚡ 性能指標",
|
| 128 |
+
lines=8,
|
| 129 |
+
placeholder="性能數據將顯示在這裡..."
|
| 130 |
)
|
| 131 |
+
|
| 132 |
+
status_output = gr.Textbox(
|
| 133 |
+
label="📊 處理狀態",
|
| 134 |
+
lines=2
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
# 使用範例
|
| 138 |
+
with gr.Accordion("📖 使用範例與 API", open=False):
|
| 139 |
+
gr.Markdown("""
|
| 140 |
+
## 🔗 Gradio Client API 使用
|
| 141 |
+
|
| 142 |
+
```python
|
| 143 |
+
from gradio_client import Client
|
| 144 |
+
|
| 145 |
+
client = Client("sheep52031/mediatek-asr-test")
|
| 146 |
+
result = client.predict("audio_file.wav", api_name="/predict")
|
| 147 |
+
|
| 148 |
+
transcript = result[0] # 識別文字
|
| 149 |
+
performance = result[1] # 性能指標
|
| 150 |
+
status = result[2] # 處理狀態
|
| 151 |
+
```
|
| 152 |
+
|
| 153 |
+
## 📊 評估指標
|
| 154 |
+
- **RTF < 1.0**: 實時處理能力
|
| 155 |
+
- **準確度**: 台灣國語識別正確率
|
| 156 |
+
- **處理時間**: 總耗時包含模型載入
|
| 157 |
+
""")
|
| 158 |
|
| 159 |
+
# 事件綁定
|
| 160 |
submit_btn.click(
|
| 161 |
transcribe_audio,
|
| 162 |
inputs=[audio_input],
|