Spaces:
Sleeping
Sleeping
File size: 16,418 Bytes
d806299 32a6857 c3ecf02 32a6857 8b910c2 32a6857 c3ecf02 32a6857 c3ecf02 32a6857 1690356 32a6857 c3ecf02 32a6857 1690356 32a6857 ce5a27b 32a6857 ab1ae1b 32a6857 ab1ae1b 32a6857 ab1ae1b 32a6857 ab1ae1b 32a6857 ab1ae1b 32a6857 ab1ae1b 32a6857 66a53d0 ab1ae1b 32a6857 ab1ae1b 66a53d0 32a6857 ab1ae1b 2d05396 66a53d0 32a6857 ce5a27b 32a6857 ce5a27b 32a6857 bf422dc ab1ae1b bf422dc 32a6857 ce5a27b 32a6857 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import os
import json
import math
import urllib.request
from io import BytesIO
from typing import Any, Dict, List, Optional
import numpy as np
from PIL import Image
try:
import torch
from transformers import CLIPModel, CLIPProcessor
import faiss # type: ignore
from huggingface_hub import hf_hub_download, InferenceClient
except Exception as import_error: # pragma: no cover
raise RuntimeError(
"Required packages not found. Please install: torch, transformers, pillow, faiss-cpu, huggingface_hub"
) from import_error
class EndToEndRAG:
"""
End-to-end multimodal RAG system using local CLIP + FAISS retrieval and remote generation via Inference API.
"""
def __init__(
self,
clip_model_name: str = "aaalaaa/multimodal-face-clip",
generator_model_name: Optional[str] = "google/gemma-2b",
index_path: Optional[str] = None,
doc_embeddings_path: Optional[str] = None,
doc_metadata_path: Optional[str] = None,
device: Optional[str] = None,
text_weight: float = 0.7,
image_weight: float = 0.3,
top_k: int = 1,
max_new_tokens: int = 10,
temperature: float = 0.1,
) -> None:
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self.text_weight = float(text_weight)
self.image_weight = float(image_weight)
self.top_k = int(top_k)
self.max_new_tokens = int(max_new_tokens)
self.temperature = float(temperature)
if not math.isclose(self.text_weight + self.image_weight, 1.0, rel_tol=1e-6):
raise ValueError("text_weight + image_weight must equal 1.0")
# Models: CLIP
self.clip_processor = CLIPProcessor.from_pretrained(clip_model_name)
self.clip_model = CLIPModel.from_pretrained(clip_model_name).to(self.device)
self.clip_model.eval()
# Inference client for generation (remote)
self.inference_client: Optional[InferenceClient] = None
if generator_model_name:
hf_token = os.environ.get("HUGGINGFACEHUB_API_TOKEN") or os.environ.get("HF_TOKEN")
model_name = os.environ.get("HF_INFERENCE_MODEL", generator_model_name)
self.inference_client = InferenceClient(model=model_name, token=hf_token)
# Two-index stores
self.text_index: Optional[faiss.Index] = None
self.image_index: Optional[faiss.Index] = None
self.metadata: List[Dict[str, Any]] = []
self.id_to_original: Dict[str, Dict[str, Any]] = {}
# Single-index store
self.index: Optional[faiss.Index] = None
self.doc_embeddings: Optional[np.ndarray] = None
self.doc_metadata: List[Dict[str, Any]] = []
# Load local single-index mode if provided
self._load_index(index_path, doc_embeddings_path, doc_metadata_path)
@classmethod
def default(
cls,
hf_token: Optional[str] = None,
text_weight: float = 0.7,
image_weight: float = 0.3,
top_k: int = 1,
max_new_tokens: int = 10,
temperature: float = 0.1,
device: Optional[str] = None,
) -> "EndToEndRAG":
instance = cls(
clip_model_name="aaalaaa/multimodal-face-clip",
generator_model_name="google/gemma-2b",
index_path=None,
doc_embeddings_path=None,
doc_metadata_path=None,
device=device,
text_weight=text_weight,
image_weight=image_weight,
top_k=top_k,
max_new_tokens=max_new_tokens,
temperature=temperature,
)
# Download indices and metadata via HF Hub
token = hf_token or os.environ.get("HUGGINGFACEHUB_API_TOKEN") or os.environ.get("HF_TOKEN")
text_index_path = hf_hub_download(
repo_id="aaalaaa/multimodal-face-clip", filename="embeddings/text_index.faiss", token=token
)
image_index_path = hf_hub_download(
repo_id="aaalaaa/multimodal-face-clip", filename="embeddings/image_index.faiss", token=token
)
metadata_path = hf_hub_download(
repo_id="aaalaaa/multimodal-face-clip", filename="embeddings/metadata.json", token=token
)
original_path = hf_hub_download(
repo_id="aaalaaa/multimodal-face-clip", filename="saved_data.json", token=token
)
instance.text_index = faiss.read_index(text_index_path)
instance.image_index = faiss.read_index(image_index_path)
with open(metadata_path, "r", encoding="utf-8") as f:
instance.metadata = json.load(f)
with open(original_path, "r", encoding="utf-8") as f:
original_data = json.load(f)
instance.id_to_original = {str(item.get("id")): item for item in original_data}
return instance
def query(self, text: Optional[str], image_url: Optional[str], options: Optional[List[str]] = None) -> str:
if (text is None or text.strip() == "") and (image_url is None or image_url.strip() == ""):
return "ورودی معتبری ارائه نشده است. لطفاً متن پرسش یا تصویر را ارسال کنید."
retrieved = self._retrieve(text=text, image_url=image_url, top_k=self.top_k)
prompt = self._build_prompt(text=text, image_url=image_url, retrieved=retrieved, options=options)
answer = self._generate(prompt, is_mcq=bool(options), options=options)
return answer
def _load_index(
self,
index_path: Optional[str],
doc_embeddings_path: Optional[str],
doc_metadata_path: Optional[str],
) -> None:
if index_path and os.path.exists(index_path):
self.index = faiss.read_index(index_path)
if doc_embeddings_path and os.path.exists(doc_embeddings_path):
self.doc_embeddings = np.load(doc_embeddings_path)
if doc_metadata_path and os.path.exists(doc_metadata_path):
with open(doc_metadata_path, "r", encoding="utf-8") as f:
self.doc_metadata = json.load(f)
if self.index is None and self.doc_embeddings is not None:
self._normalize_inplace(self.doc_embeddings)
dim = int(self.doc_embeddings.shape[1])
self.index = faiss.IndexFlatIP(dim)
self.index.add(self.doc_embeddings.astype(np.float32))
if self.index is None:
self.index = None
self.doc_embeddings = None
self.doc_metadata = []
@torch.no_grad()
def _encode_text(self, text: str) -> np.ndarray:
inputs = self.clip_processor(text=[text], images=None, return_tensors="pt", padding=True).to(self.device)
text_features = self.clip_model.get_text_features(**{k: v for k, v in inputs.items() if k.startswith("input_")})
text_features = torch.nn.functional.normalize(text_features, p=2, dim=-1)
return text_features.detach().cpu().numpy()[0]
@torch.no_grad()
def _encode_image(self, image: Image.Image) -> np.ndarray:
inputs = self.clip_processor(text=None, images=image, return_tensors="pt").to(self.device)
image_features = self.clip_model.get_image_features(**{k: v for k, v in inputs.items() if k.startswith("pixel_")})
image_features = torch.nn.functional.normalize(image_features, p=2, dim=-1)
return image_features.detach().cpu().numpy()[0]
def _retrieve(
self,
text: Optional[str],
image_url: Optional[str],
top_k: int,
) -> List[Dict[str, Any]]:
has_two_indices = self.text_index is not None and self.image_index is not None and len(self.metadata) > 0
query_vectors: List[np.ndarray] = []
weights: List[float] = []
if text and text.strip():
query_vectors.append(self._encode_text(text.strip()))
weights.append(self.text_weight)
if image_url and image_url.strip():
image = self._load_image(image_url.strip())
if image is not None:
query_vectors.append(self._encode_image(image))
weights.append(self.image_weight)
if not query_vectors:
return []
if has_two_indices:
stacked = np.stack(query_vectors).astype(np.float32)
weights_arr = np.array(weights, dtype=np.float32).reshape(-1, 1)
combined = (stacked * weights_arr).sum(axis=0)
combined = self._normalize(combined).reshape(1, -1).astype(np.float32)
text_scores, text_indices = self.text_index.search(combined, max(top_k * 3, top_k))
image_scores, image_indices = self.image_index.search(combined, max(top_k * 3, top_k))
results: Dict[str, Dict[str, Any]] = {}
for score, idx in zip(text_scores[0], text_indices[0]):
if idx < 0 or idx >= len(self.metadata):
continue
meta = self.metadata[idx]
if meta.get("type") != "text":
continue
pid = str(meta.get("id"))
entry = results.setdefault(
pid,
{"id": pid, "text_similarity": 0.0, "image_similarity": 0.0, "combined_similarity": 0.0},
)
entry["text_similarity"] = float(score)
entry["combined_similarity"] += float(score) * self.text_weight
for score, idx in zip(image_scores[0], image_indices[0]):
if idx < 0 or idx >= len(self.metadata):
continue
meta = self.metadata[idx]
if meta.get("type") != "image":
continue
pid = str(meta.get("id"))
entry = results.setdefault(
pid,
{"id": pid, "text_similarity": 0.0, "image_similarity": 0.0, "combined_similarity": 0.0},
)
entry["image_similarity"] = float(score)
entry["combined_similarity"] += float(score) * self.image_weight
ranked = sorted(results.values(), key=lambda x: x["combined_similarity"], reverse=True)
final: List[Dict[str, Any]] = []
for rank, res in enumerate(ranked[:top_k], start=1):
original = self.id_to_original.get(res["id"], {})
final.append(
{
"id": res["id"],
"rank": rank,
"text_similarity": res["text_similarity"],
"image_similarity": res["image_similarity"],
"combined_similarity": res["combined_similarity"],
"biography": original.get("cleaned_bio", ""),
"image_urls": original.get("images", []),
}
)
return final
if self.index is None or self.doc_embeddings is None or len(self.doc_metadata) == 0:
return []
stacked = np.stack(query_vectors).astype(np.float32)
weights_arr = np.array(weights, dtype=np.float32).reshape(-1, 1)
weighted = (stacked * weights_arr).sum(axis=0)
weighted = self._normalize(weighted)
query = weighted.reshape(1, -1).astype(np.float32)
scores, indices = self.index.search(query, top_k)
scores = scores[0]
indices = indices[0]
results: List[Dict[str, Any]] = []
for rank, (idx, score) in enumerate(zip(indices, scores)):
if idx < 0 or idx >= len(self.doc_metadata):
continue
meta = self.doc_metadata[idx]
results.append(
{
"id": meta.get("id", str(idx)),
"rank": int(rank + 1),
"score": float(score),
"title": meta.get("title", ""),
"text": meta.get("text", ""),
"image_path": meta.get("image_path"),
"metadata": meta,
}
)
return results
def _build_prompt(
self,
text: Optional[str],
image_url: Optional[str],
retrieved: List[Dict[str, Any]],
options: Optional[List[str]] = None,
) -> str:
# Notebook-style context formatting
parts: List[str] = []
for i, item in enumerate(retrieved, start=1):
parts.append(f"Person {i}:")
bio = item.get("biography") or item.get("text") or ""
parts.append(f"Biography: {bio}")
imgs = item.get("image_urls") or []
if imgs:
parts.append(f"Image URLs: {', '.join(imgs)}")
score = item.get("combined_similarity")
if score is not None:
parts.append(f"Relevance Score: {float(score):.3f}")
parts.append("---")
context = "\n".join(parts) if parts else "(no retrieved content)"
user_q = text.strip() if text else ""
if options:
options_text = "\n".join([f"{i}: {opt}" for i, opt in enumerate(options)])
prompt = (
f"Retrieved Information:\n{context}\n\n"
f"Question: {user_q}\n\n"
f"Options:\n{options_text}\n\n"
"Output ONLY the chosen option number in the format \"Choice: [number]\". Do not include any other text.\n"
"Choice:"
)
return prompt
# Free-form answer
prompt = (
f"Retrieved Information:\n{context}\n\n"
f"Question: {user_q}\n\n"
"Answer in concise Persian:"
)
return prompt
def _generate(self, prompt: str, is_mcq: bool, options: Optional[List[str]]) -> str:
if self.inference_client is None:
return (
"سرویس تولید متن تنظیم نشده است. لطفاً یک مدل از طریق Inference API تنظیم کنید یا تولید محلی را فعال کنید."
)
max_new = 10 if is_mcq else self.max_new_tokens
temp = 0.1 if is_mcq else self.temperature
# Prefer chat
try:
chat = self.inference_client.chat_completion(
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt},
],
max_tokens=max_new,
temperature=temp,
stream=False,
)
if chat and getattr(chat, "choices", None):
content = getattr(chat.choices[0].message, "content", "")
if isinstance(content, str) and content.strip():
return content.strip()
except Exception:
pass
# Fallback to text generation
try:
out = self.inference_client.text_generation(
prompt,
max_new_tokens=max_new,
temperature=temp,
do_sample=temp > 0,
return_full_text=False,
details=False,
stream=False,
)
if isinstance(out, str) and out.strip():
return out.strip()
gen = getattr(out, "generated_text", None)
if isinstance(gen, str) and gen.strip():
return gen.strip()
return ""
except Exception as e:
return f"خطا در تولید پاسخ: {type(e).__name__}: {e}"
@staticmethod
def _normalize(v: np.ndarray) -> np.ndarray:
denom = np.linalg.norm(v) + 1e-12
return (v / denom).astype(np.float32)
@staticmethod
def _normalize_inplace(mat: np.ndarray) -> None:
norms = np.linalg.norm(mat, axis=1, keepdims=True) + 1e-12
mat /= norms
@staticmethod
def _load_image(image_url: str) -> Optional[Image.Image]:
try:
if image_url.startswith("http://") or image_url.startswith("https://"):
with urllib.request.urlopen(image_url, timeout=10) as resp:
data = resp.read()
return Image.open(BytesIO(data)).convert("RGB")
if os.path.exists(image_url):
return Image.open(image_url).convert("RGB")
except Exception:
return None
return None |