Update app.py
Browse files
app.py
CHANGED
|
@@ -4,29 +4,49 @@ import torch.nn as nn
|
|
| 4 |
from torchvision import models, transforms
|
| 5 |
from PIL import Image
|
| 6 |
import json
|
|
|
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
# Load the model
|
| 10 |
-
# --------------------------
|
| 11 |
-
model_path = "densenet121-a639ec97.pth" # put this file in the Space
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
model.load_state_dict(state_dict, strict=True)
|
| 17 |
-
model.eval()
|
| 18 |
-
|
| 19 |
-
# --------------------------
|
| 20 |
-
# Load ImageNet class labels
|
| 21 |
-
# --------------------------
|
| 22 |
-
# Downloaded from: https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt
|
| 23 |
with open("imagenet_classes.json", "r") as f:
|
| 24 |
idx_to_class = json.load(f)
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
#
|
| 28 |
-
#
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
transforms.Resize((224, 224)),
|
| 31 |
transforms.ToTensor(),
|
| 32 |
transforms.Normalize(
|
|
@@ -35,36 +55,37 @@ preprocess = transforms.Compose([
|
|
| 35 |
)
|
| 36 |
])
|
| 37 |
|
| 38 |
-
#
|
| 39 |
# Prediction function
|
| 40 |
-
#
|
| 41 |
def predict(image):
|
| 42 |
image = Image.fromarray(image).convert("RGB")
|
| 43 |
-
img_tensor =
|
| 44 |
|
| 45 |
with torch.no_grad():
|
| 46 |
outputs = model(img_tensor)
|
| 47 |
-
probs = torch.
|
| 48 |
top5_prob, top5_idx = torch.topk(probs, 5)
|
| 49 |
|
| 50 |
results = []
|
| 51 |
for p, idx in zip(top5_prob[0], top5_idx[0]):
|
|
|
|
| 52 |
results.append({
|
| 53 |
-
"class":
|
| 54 |
"confidence": float(p.item())
|
| 55 |
})
|
| 56 |
|
| 57 |
return results
|
| 58 |
|
| 59 |
-
#
|
| 60 |
-
# Gradio
|
| 61 |
-
#
|
| 62 |
-
|
| 63 |
fn=predict,
|
| 64 |
inputs=gr.Image(type="numpy", label="Upload Image"),
|
| 65 |
outputs=gr.JSON(label="Top-5 Predictions"),
|
| 66 |
-
title="DenseNet-121
|
| 67 |
-
description="Upload
|
| 68 |
)
|
| 69 |
|
| 70 |
-
|
|
|
|
| 4 |
from torchvision import models, transforms
|
| 5 |
from PIL import Image
|
| 6 |
import json
|
| 7 |
+
import os
|
| 8 |
|
| 9 |
+
MODEL_PATH = "densenet121-a639ec97.pth" # rename your .pth to model.pth
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# ------------------------------------------
|
| 12 |
+
# Load ImageNet Label Mapping
|
| 13 |
+
# ------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
with open("imagenet_classes.json", "r") as f:
|
| 15 |
idx_to_class = json.load(f)
|
| 16 |
|
| 17 |
+
# ------------------------------------------
|
| 18 |
+
# Load Model with Legacy-Key Compatibility
|
| 19 |
+
# ------------------------------------------
|
| 20 |
+
def load_legacy_densenet(path):
|
| 21 |
+
print("Loading model:", path)
|
| 22 |
+
|
| 23 |
+
# Load state_dict (old torchvision format)
|
| 24 |
+
state_dict = torch.load(path, map_location="cpu")
|
| 25 |
+
|
| 26 |
+
# Create new DenseNet model
|
| 27 |
+
model = models.densenet121(weights=None)
|
| 28 |
+
|
| 29 |
+
# Try loading with strict=False (legacy fix)
|
| 30 |
+
missing, unexpected = model.load_state_dict(state_dict, strict=False)
|
| 31 |
+
|
| 32 |
+
print("\n=== LOADING SUMMARY ===")
|
| 33 |
+
print("Missing keys:", len(missing))
|
| 34 |
+
print("Unexpected keys:", len(unexpected))
|
| 35 |
+
|
| 36 |
+
if len(missing) > 0:
|
| 37 |
+
print("⚠ NOTE: Missing keys detected (normal for legacy checkpoint)")
|
| 38 |
+
if len(unexpected) > 0:
|
| 39 |
+
print("⚠ NOTE: Unexpected keys detected (normal for legacy checkpoint)")
|
| 40 |
+
|
| 41 |
+
model.eval()
|
| 42 |
+
return model
|
| 43 |
+
|
| 44 |
+
model = load_legacy_densenet(MODEL_PATH)
|
| 45 |
+
|
| 46 |
+
# ------------------------------------------
|
| 47 |
+
# Preprocessing
|
| 48 |
+
# ------------------------------------------
|
| 49 |
+
transform = transforms.Compose([
|
| 50 |
transforms.Resize((224, 224)),
|
| 51 |
transforms.ToTensor(),
|
| 52 |
transforms.Normalize(
|
|
|
|
| 55 |
)
|
| 56 |
])
|
| 57 |
|
| 58 |
+
# ------------------------------------------
|
| 59 |
# Prediction function
|
| 60 |
+
# ------------------------------------------
|
| 61 |
def predict(image):
|
| 62 |
image = Image.fromarray(image).convert("RGB")
|
| 63 |
+
img_tensor = transform(image).unsqueeze(0)
|
| 64 |
|
| 65 |
with torch.no_grad():
|
| 66 |
outputs = model(img_tensor)
|
| 67 |
+
probs = torch.softmax(outputs, dim=1)
|
| 68 |
top5_prob, top5_idx = torch.topk(probs, 5)
|
| 69 |
|
| 70 |
results = []
|
| 71 |
for p, idx in zip(top5_prob[0], top5_idx[0]):
|
| 72 |
+
cls_name = idx_to_class.get(str(idx.item()), "Unknown")
|
| 73 |
results.append({
|
| 74 |
+
"class": cls_name,
|
| 75 |
"confidence": float(p.item())
|
| 76 |
})
|
| 77 |
|
| 78 |
return results
|
| 79 |
|
| 80 |
+
# ------------------------------------------
|
| 81 |
+
# Gradio Interface
|
| 82 |
+
# ------------------------------------------
|
| 83 |
+
interface = gr.Interface(
|
| 84 |
fn=predict,
|
| 85 |
inputs=gr.Image(type="numpy", label="Upload Image"),
|
| 86 |
outputs=gr.JSON(label="Top-5 Predictions"),
|
| 87 |
+
title="DenseNet-121 Legacy Model Classifier (ImageNet)",
|
| 88 |
+
description="Upload any image. Model returns top-5 ImageNet predictions.",
|
| 89 |
)
|
| 90 |
|
| 91 |
+
interface.launch()
|