Spaces:
Runtime error
Runtime error
| import torch | |
| import math | |
| import numpy as np | |
| from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler, UniPCMultistepScheduler | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
| from typing import Union, Optional, List, Callable, Dict, Any, Tuple | |
| from momentum_scheduler import ( | |
| GHVBScheduler, | |
| PLMSWithHBScheduler, | |
| PLMSWithNTScheduler, | |
| MomentumDPMSolverMultistepScheduler, | |
| MomentumUniPCMultistepScheduler, | |
| ) | |
| available_solvers = { | |
| "GHVB": GHVBScheduler, | |
| "PLMS_HB": PLMSWithHBScheduler, | |
| "PLMS_NT": PLMSWithNTScheduler, | |
| "DPM-Solver++": MomentumDPMSolverMultistepScheduler, | |
| "UniPC": MomentumUniPCMultistepScheduler, | |
| } | |
| def get_momentum_number(order, beta): | |
| out = order if beta == 1.0 else order - (1 - beta) | |
| return out | |
| def setup_scheduler(pipe, scheduler, momentum_type="Polyak's heavy ball", order=4.0, beta=1.0, original_config=None): | |
| assert original_config is not None | |
| if scheduler in ["DPM-Solver++", "UniPC"]: | |
| if momentum_type in ["Nesterov"]: | |
| raise NotImplementedError(f"{scheduler} w/ Nesterov is not implemented.") | |
| pipe.scheduler = available_solvers[scheduler].from_config(original_config) | |
| pipe.scheduler.initialize_momentum(beta=beta) | |
| elif scheduler in ["PLMS"]: | |
| momentum_number = get_momentum_number(order, beta) | |
| method = "PLMS_HB" if momentum_type == "Polyak's heavy ball" else "PLMS_NT" | |
| pipe.scheduler = DPMSolverMultistepScheduler.from_config(original_config) | |
| pipe.init_scheduler(method=method, order=momentum_number) | |
| pipe.clear_scheduler() | |
| elif scheduler in ["GHVB"]: | |
| momentum_number = get_momentum_number(order, beta) | |
| pipe.scheduler = DPMSolverMultistepScheduler.from_config(original_config) | |
| pipe.init_scheduler(method="GHVB", order=momentum_number) | |
| pipe.clear_scheduler() | |
| return pipe | |
| class CustomPipeline(StableDiffusionPipeline): | |
| def clear_scheduler(self): | |
| self.scheduler_uncond.clear() | |
| self.scheduler_text.clear() | |
| def init_scheduler(self, method, order): | |
| # equivalent to not applied numerical operator splitting since orders are the same | |
| self.scheduler_uncond = available_solvers[method](self.scheduler, order) | |
| self.scheduler_text = available_solvers[method](self.scheduler, order) | |
| def get_noise(self, latents, prompt_embeds, guidance_scale, t, do_classifier_free_guidance): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| grads_a = guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| return noise_pred_uncond, grads_a | |
| def denoising_step( | |
| self, | |
| latents, | |
| prompt_embeds, | |
| guidance_scale, | |
| t, | |
| do_classifier_free_guidance, | |
| method, | |
| extra_step_kwargs, | |
| ): | |
| noise_pred_uncond, grads_a = self.get_noise( | |
| latents, prompt_embeds, guidance_scale, t, do_classifier_free_guidance | |
| ) | |
| if method in ["dpm", "unipc"]: | |
| latents = self.scheduler.step(noise_pred_uncond + grads_a, t, latents, **extra_step_kwargs).prev_sample | |
| elif method in ["hb", "ghvb", "nt"]: | |
| latents = self.scheduler_uncond.step(noise_pred_uncond, t, latents, output_mode="scale") | |
| latents = self.scheduler_text.step(grads_a, t, latents, output_mode='back') | |
| else: | |
| raise NotImplementedError | |
| return latents | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| method="ghvb", | |
| ): | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds | |
| ) | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| prompt_embeds = self._encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| ) | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # print(timesteps) | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| latents = self.denoising_step( | |
| latents, | |
| prompt_embeds, | |
| guidance_scale, | |
| t, | |
| do_classifier_free_guidance, | |
| method, | |
| extra_step_kwargs, | |
| ) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| if output_type == "latent": | |
| image = latents | |
| has_nsfw_concept = None | |
| elif output_type == "pil": | |
| # 8. Post-processing | |
| image = self.decode_latents(latents) | |
| # 9. Run safety checker | |
| # image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
| has_nsfw_concept = False | |
| # 10. Convert to PIL | |
| image = self.numpy_to_pil(image) | |
| else: | |
| # 8. Post-processing | |
| image = self.decode_latents(latents) | |
| # 9. Run safety checker | |
| # image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
| has_nsfw_concept = False | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
| def generate(self, params): | |
| params["output_type"] = "latent" | |
| ori_latents = self.__call__(**params)["images"] | |
| with torch.no_grad(): | |
| latents = torch.clone(ori_latents) | |
| image = self.decode_latents(latents) | |
| image = self.numpy_to_pil(image)[0] | |
| return image, ori_latents |