Spaces:
Sleeping
Sleeping
Jasmeet Singh
commited on
Upload 3 files
Browse files- dataTransform.py +29 -0
- styleTransfer.py +75 -0
- vggModel.py +24 -0
dataTransform.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
import torchvision.transforms as transforms #to transform the images
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def load_image(image_path, device):
|
| 6 |
+
|
| 7 |
+
image_size = 356
|
| 8 |
+
|
| 9 |
+
loader = transforms.Compose(
|
| 10 |
+
[
|
| 11 |
+
transforms.Resize((image_size, image_size)), #RESIZE IMAGE
|
| 12 |
+
transforms.ToTensor() #TRANSFORM IMAGE TO TENSOR
|
| 13 |
+
]
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
image = Image.open(image_path)
|
| 17 |
+
image = loader(image).unsqueeze(0) #(h, c, w) -> (1, h, c, w) adds batch dim
|
| 18 |
+
|
| 19 |
+
return image.to(device)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def tensor_to_image(tensor):
|
| 23 |
+
tensor = tensor.clone().detach() # Ensure the tensor is detached from the graph
|
| 24 |
+
tensor = tensor.squeeze(0) # Remove batch dimension if present
|
| 25 |
+
tensor = torch.clamp(tensor, 0, 1) # Clamp the values to [0, 1] range
|
| 26 |
+
|
| 27 |
+
unloader = transforms.ToPILImage()
|
| 28 |
+
image = unloader(tensor.cpu())
|
| 29 |
+
return image
|
styleTransfer.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch # for model
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.optim as optim
|
| 5 |
+
from PIL import Image #for importing images
|
| 6 |
+
import torchvision.models as models #to load vgg 19 model
|
| 7 |
+
import torchvision.transforms as transforms
|
| 8 |
+
from tqdm import tqdm
|
| 9 |
+
|
| 10 |
+
from dataTransform import load_image
|
| 11 |
+
from vggModel import VGGNet
|
| 12 |
+
|
| 13 |
+
def style_transfer(content_img, style_img, total_steps, alpha=1e5, beta=1e10, learning_rate=0.001):
|
| 14 |
+
# Preprocess the input images
|
| 15 |
+
|
| 16 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 17 |
+
print('-'*30)
|
| 18 |
+
print(f'Device Initialized: {device}')
|
| 19 |
+
print('-'*30)
|
| 20 |
+
content_img = load_image(content_img, device)
|
| 21 |
+
style_img = load_image(style_img, device)
|
| 22 |
+
generated_img = content_img.clone().requires_grad_(True)
|
| 23 |
+
optimizer = optim.Adam([generated_img], lr = learning_rate)
|
| 24 |
+
model = VGGNet().to(device).eval()
|
| 25 |
+
|
| 26 |
+
# print(content_img.shape)
|
| 27 |
+
# print(style_img.shape)
|
| 28 |
+
# print(generated_img.shape)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
for step in tqdm(range(total_steps)):
|
| 32 |
+
|
| 33 |
+
#first we send the 3 images from the vgg network
|
| 34 |
+
|
| 35 |
+
generated_feats = model(generated_img)
|
| 36 |
+
original_image_feats = model(content_img)
|
| 37 |
+
style_feats = model(style_img)
|
| 38 |
+
|
| 39 |
+
#defining the style loss
|
| 40 |
+
|
| 41 |
+
style_loss = original_loss = 0
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
for gen_feat, orig_image_feat, styl_feat in zip(generated_feats, original_image_feats, style_feats): #looping over each feature
|
| 45 |
+
|
| 46 |
+
# print(gen_feat.shape)
|
| 47 |
+
# print(orig_image_feat.shape)
|
| 48 |
+
# print(styl_feat.shape)
|
| 49 |
+
|
| 50 |
+
batch, channel, height, width = gen_feat.shape
|
| 51 |
+
original_loss += torch.mean((gen_feat - orig_image_feat)**2)
|
| 52 |
+
|
| 53 |
+
# computing gram matrix for gen and style to compute style loss
|
| 54 |
+
|
| 55 |
+
G = gen_feat.view(channel, height*width).mm(
|
| 56 |
+
gen_feat.view(channel, height*width).t()
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# correlation matrix
|
| 60 |
+
|
| 61 |
+
A = styl_feat.view(channel, height*width).mm(
|
| 62 |
+
styl_feat.view(channel, height*width).t()
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
style_loss += torch.mean((G-A)**2)
|
| 66 |
+
|
| 67 |
+
total_loss = alpha*original_loss + beta*style_loss
|
| 68 |
+
|
| 69 |
+
optimizer.zero_grad()
|
| 70 |
+
total_loss.backward()
|
| 71 |
+
optimizer.step()
|
| 72 |
+
|
| 73 |
+
if step == total_steps - 1:
|
| 74 |
+
# Postprocess and return the final generated image
|
| 75 |
+
return generated_img
|
vggModel.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch # for model
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torchvision.models as models #to load vgg 19 model
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class VGGNet(nn.Module):
|
| 7 |
+
|
| 8 |
+
def __init__(self):
|
| 9 |
+
|
| 10 |
+
super(VGGNet, self).__init__()
|
| 11 |
+
self.chosen_features = ['0', '5', '10', '19', '28']
|
| 12 |
+
self.vgg = models.vgg19(pretrained = True).features #select only certain layers to extract fetaures
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def forward(self,x):
|
| 16 |
+
features = [] #returns features from selected conv layers from VGG19 pretrained model
|
| 17 |
+
|
| 18 |
+
for layer_num, layer in self.vgg._modules.items():
|
| 19 |
+
x = layer(x)
|
| 20 |
+
|
| 21 |
+
if layer_num in self.chosen_features:
|
| 22 |
+
features.append(x)
|
| 23 |
+
|
| 24 |
+
return features
|