test the api
Browse files- api_test.py +82 -0
api_test.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from gradio_client import Client
|
| 2 |
+
import time
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
from api_helper import preprocess_image, encode_numpy_array
|
| 8 |
+
clip_image_size = 224
|
| 9 |
+
|
| 10 |
+
client = Client("http://127.0.0.1:7860/")
|
| 11 |
+
|
| 12 |
+
print("do we have cuda", torch.cuda.is_available())
|
| 13 |
+
|
| 14 |
+
def test_text():
|
| 15 |
+
result = client.predict(
|
| 16 |
+
"Howdy!", # str representing string value in 'Input' Textbox component
|
| 17 |
+
api_name="/text_to_embeddings"
|
| 18 |
+
)
|
| 19 |
+
return(result)
|
| 20 |
+
|
| 21 |
+
def test_image():
|
| 22 |
+
result = client.predict(
|
| 23 |
+
"https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png", # str representing filepath or URL to image in 'Image Prompt' Image component
|
| 24 |
+
api_name="/image_to_embeddings"
|
| 25 |
+
)
|
| 26 |
+
return(result)
|
| 27 |
+
|
| 28 |
+
def test_image_as_payload(payload):
|
| 29 |
+
result = client.predict(
|
| 30 |
+
payload, # image as string payload
|
| 31 |
+
api_name="/image_as_payload_to_embeddings"
|
| 32 |
+
)
|
| 33 |
+
return(result)
|
| 34 |
+
|
| 35 |
+
# performance test for text
|
| 36 |
+
start = time.time()
|
| 37 |
+
for i in range(100):
|
| 38 |
+
test_text()
|
| 39 |
+
end = time.time()
|
| 40 |
+
# print average time in seconds and in milliseconds and number of predictions per second
|
| 41 |
+
print("Average time for text: ", (end - start) / 100, "s")
|
| 42 |
+
print("Average time for text: ", (end - start) * 10, "ms")
|
| 43 |
+
print("Number of predictions per second for text: ", 1 / ((end - start) / 100))
|
| 44 |
+
|
| 45 |
+
# performance test for image
|
| 46 |
+
start = time.time()
|
| 47 |
+
for i in range(100):
|
| 48 |
+
test_image()
|
| 49 |
+
end = time.time()
|
| 50 |
+
# print average time in seconds and in milliseconds
|
| 51 |
+
print("Average time for image: ", (end - start) / 100, "s")
|
| 52 |
+
print("Average time for image: ", (end - start) * 10, "ms")
|
| 53 |
+
print("Number of predictions per second for image: ", 1 / ((end - start) / 100))
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
test_image_url = "https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png"
|
| 58 |
+
# download image from url
|
| 59 |
+
import requests
|
| 60 |
+
from PIL import Image
|
| 61 |
+
from io import BytesIO
|
| 62 |
+
response = requests.get(test_image_url)
|
| 63 |
+
input_image = Image.open(BytesIO(response.content))
|
| 64 |
+
input_image = input_image.convert('RGB')
|
| 65 |
+
# convert image to numpy array
|
| 66 |
+
input_image = np.array(input_image)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
if input_image.shape[0] > clip_image_size or input_image.shape[1] > clip_image_size:
|
| 70 |
+
input_image = preprocess_image(input_image, clip_image_size)
|
| 71 |
+
payload = encode_numpy_array(input_image)
|
| 72 |
+
|
| 73 |
+
# performance test for image as payload
|
| 74 |
+
start = time.time()
|
| 75 |
+
for i in range(100):
|
| 76 |
+
test_image_as_payload(payload)
|
| 77 |
+
end = time.time()
|
| 78 |
+
# print average time in seconds and in milliseconds
|
| 79 |
+
print("Average time for image as payload: ", (end - start) / 100, "s")
|
| 80 |
+
print("Average time for image as payload: ", (end - start) * 10, "ms")
|
| 81 |
+
print("Number of predictions per second for image as payload: ", 1 / ((end - start) / 100))
|
| 82 |
+
|