Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,6 +11,7 @@ from typing import Dict, Tuple, Any
|
|
| 11 |
import torch
|
| 12 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 13 |
import numpy as np
|
|
|
|
| 14 |
|
| 15 |
try:
|
| 16 |
from peft import PeftModel
|
|
@@ -20,9 +21,11 @@ except ImportError:
|
|
| 20 |
|
| 21 |
# --- Configuration ---
|
| 22 |
# Model path is set to sojka
|
| 23 |
-
MODEL_PATH = os.getenv("MODEL_PATH", "
|
| 24 |
TOKENIZER_PATH = os.getenv("TOKENIZER_PATH", "sdadas/mmlw-roberta-base")
|
| 25 |
|
|
|
|
|
|
|
| 26 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 27 |
LABELS = ["self-harm", "hate", "vulgar", "sex", "crime"]
|
| 28 |
MAX_SEQ_LENGTH = 512
|
|
@@ -43,6 +46,34 @@ THRESHOLDS = {
|
|
| 43 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 44 |
logger = logging.getLogger(__name__)
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
def load_model_and_tokenizer(model_path: str, tokenizer_path: str, device: str) -> Tuple[AutoModelForSequenceClassification, AutoTokenizer]:
|
| 47 |
"""Load the trained model and tokenizer"""
|
| 48 |
logger.info(f"Loading tokenizer from {tokenizer_path}")
|
|
@@ -136,12 +167,28 @@ def gradio_predict(text: str) -> Tuple[str, Dict[str, float]]:
|
|
| 136 |
label: score for label, score in predictions.items()
|
| 137 |
if score >= THRESHOLDS[label]
|
| 138 |
}
|
| 139 |
-
|
|
|
|
| 140 |
if not unsafe_categories:
|
| 141 |
verdict = "✅ Komunikat jest bezpieczny."
|
|
|
|
| 142 |
else:
|
| 143 |
highest_unsafe_category = max(unsafe_categories, key=unsafe_categories.get)
|
| 144 |
verdict = f"⚠️ Wykryto potencjalnie szkodliwe treści:\n {highest_unsafe_category.upper()}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
return verdict, predictions
|
| 147 |
|
|
|
|
| 11 |
import torch
|
| 12 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 13 |
import numpy as np
|
| 14 |
+
from huggingface_hub import HfApi
|
| 15 |
|
| 16 |
try:
|
| 17 |
from peft import PeftModel
|
|
|
|
| 21 |
|
| 22 |
# --- Configuration ---
|
| 23 |
# Model path is set to sojka
|
| 24 |
+
MODEL_PATH = os.getenv("MODEL_PATH", "speakleash/sojka3")
|
| 25 |
TOKENIZER_PATH = os.getenv("TOKENIZER_PATH", "sdadas/mmlw-roberta-base")
|
| 26 |
|
| 27 |
+
REPO_ID = "speakleash/sojka-logs"
|
| 28 |
+
|
| 29 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 30 |
LABELS = ["self-harm", "hate", "vulgar", "sex", "crime"]
|
| 31 |
MAX_SEQ_LENGTH = 512
|
|
|
|
| 46 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 47 |
logger = logging.getLogger(__name__)
|
| 48 |
|
| 49 |
+
# HfApi instance
|
| 50 |
+
if HF_TOKEN:
|
| 51 |
+
api = HfApi()
|
| 52 |
+
else:
|
| 53 |
+
api = None
|
| 54 |
+
logger.warning("HF_TOKEN environment variable not set. Logging to Hugging Face Hub will be disabled.")
|
| 55 |
+
|
| 56 |
+
def log_prediction(log_data: dict):
|
| 57 |
+
if not api:
|
| 58 |
+
return
|
| 59 |
+
|
| 60 |
+
day = datetime.now().strftime("%Y-%m-%d")
|
| 61 |
+
timestamp = log_data.get('timestamp', datetime.now().timestamp())
|
| 62 |
+
|
| 63 |
+
try:
|
| 64 |
+
api.upload_file(
|
| 65 |
+
path_or_fileobj=json.dumps(log_data, indent=2, ensure_ascii=False).encode('utf-8'),
|
| 66 |
+
path_in_repo=f"predictions/{day}/{timestamp}.json",
|
| 67 |
+
repo_id=REPO_ID,
|
| 68 |
+
repo_type="dataset",
|
| 69 |
+
commit_message="log prediction",
|
| 70 |
+
token=HF_TOKEN,
|
| 71 |
+
run_as_future=True
|
| 72 |
+
)
|
| 73 |
+
except Exception as e:
|
| 74 |
+
logger.error(f"Failed to log prediction to hub: {e}")
|
| 75 |
+
|
| 76 |
+
|
| 77 |
def load_model_and_tokenizer(model_path: str, tokenizer_path: str, device: str) -> Tuple[AutoModelForSequenceClassification, AutoTokenizer]:
|
| 78 |
"""Load the trained model and tokenizer"""
|
| 79 |
logger.info(f"Loading tokenizer from {tokenizer_path}")
|
|
|
|
| 167 |
label: score for label, score in predictions.items()
|
| 168 |
if score >= THRESHOLDS[label]
|
| 169 |
}
|
| 170 |
+
|
| 171 |
+
|
| 172 |
if not unsafe_categories:
|
| 173 |
verdict = "✅ Komunikat jest bezpieczny."
|
| 174 |
+
verdict_label = "SAFE"
|
| 175 |
else:
|
| 176 |
highest_unsafe_category = max(unsafe_categories, key=unsafe_categories.get)
|
| 177 |
verdict = f"⚠️ Wykryto potencjalnie szkodliwe treści:\n {highest_unsafe_category.upper()}"
|
| 178 |
+
verdict_label = "UNSAFE"
|
| 179 |
+
|
| 180 |
+
log_data = {
|
| 181 |
+
'text': text,
|
| 182 |
+
'predictions': predictions,
|
| 183 |
+
'thresholds': THRESHOLDS,
|
| 184 |
+
'sojka_verdict': verdict_label,
|
| 185 |
+
'herbert_result': {},
|
| 186 |
+
'timestamp': datetime.now().timestamp(),
|
| 187 |
+
'model_path': MODEL_PATH,
|
| 188 |
+
'herbert_enabled': false
|
| 189 |
+
}
|
| 190 |
+
|
| 191 |
+
log_prediction(log_data)
|
| 192 |
|
| 193 |
return verdict, predictions
|
| 194 |
|