File size: 4,889 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright (c) 2025, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
from dataclasses import dataclass
from functools import partial

import fiddle as fdl
import nemo_run as run

from nemo.collections import llm
from nemo.collections.llm.gpt.model.llama import Llama3Config, LlamaModel
from nemo.collections.llm.tools.auto_configurator import AutoConfigurator, generate_configs, get_results


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_type", type=str, choices=["llama", "bert", "t5"], help="Model type to run")
    parser.add_argument("--run_number", type=int, help="Number of config to run")
    parser.add_argument("--log_dir", type=str, help="Path where to save training logs")
    parser.add_argument("--get_results", action="store_true")
    parser.add_argument("--extra_metrics", action="store_true")

    return parser.parse_args()


@dataclass
class Llama3Config145M(Llama3Config):
    num_layers: int = 12
    hidden_size: int = 768
    num_attention_heads: int = 16
    num_query_groups: int = 8
    ffn_hidden_size: int = 2688


@run.cli.factory(target=llm.pretrain, name="llama3_145m")
def llama3_145m(num_nodes=1, num_gpus_per_node=1):
    # Setup Llama3 145M config
    recipe = partial(llm.llama3_8b.pretrain_recipe, num_nodes=num_nodes, num_gpus_per_node=num_gpus_per_node)()
    recipe = run.Partial(
        llm.pretrain,
        model=run.Config(LlamaModel, config=run.Config(Llama3Config145M)),
        trainer=recipe.trainer,
        data=recipe.data,
        log=recipe.log,
        optim=recipe.optim,
        resume=None,
    )

    return recipe


def train_config(args):
    # This example will generate 3 configs.
    # It is expected that this script will be run 3 times with changing --run_number flag for each run from 1 to 3.
    # After all configurations are trained, please trigger the script using --get_results flag.
    # This script provides only Auto Configurator example using only a single GPU.

    # Get Auto Conf runner
    calculate_model_size = False
    if args.model_type == "llama":
        recipe = partial(llama3_145m)()
        recipe.data.seq_length = recipe.model.config.seq_length = 2048
    elif args.model_type == "bert":
        recipe = partial(llm.bert_110m.pretrain_recipe, num_nodes=1, num_gpus_per_node=1)()
    elif args.model_type == "t5":
        recipe = partial(llm.t5_220m.pretrain_recipe, num_nodes=1, num_gpus_per_node=1)()
        # Set to False if you don't want Auto Configurator to calculate model size
        calculate_model_size = True
    else:
        raise ValueError(f"Unsupported model type for this script: {args.model_type}")
    recipe.data.global_batch_size = 16

    runner = AutoConfigurator(
        recipe=recipe,
        gpu_memory_gb=40,
        tensor_parallel_sizes=[1],
        pipeline_parallel_sizes=[1],
        micro_batch_sizes=[1, 2, 4],
        max_training_days=1,
        max_steps_per_run=10,
        num_tokens_in_b=10,
        vocab_size=32000,
        path_to_logs=args.log_dir,
        calculate_model_size=calculate_model_size,
    )

    base_cfg, configs = generate_configs(runner)
    if not args.get_results:
        # Get generated configs
        partials = list(configs.values())
        names = list(configs.keys())

        # Run pre-training
        pretrain_cfg = partials[args.run_number - 1]
        if args.extra_metrics:
            from nemo.lightning.pytorch.callbacks import (
                MemoryMonitor,
                OptimizerMonitor,
                RuntimeEstimator,
                SpeedMonitor,
            )

            # add callbacks
            pretrain_cfg.trainer.callbacks.append(run.Config(SpeedMonitor, window_size=5))
            pretrain_cfg.trainer.callbacks.append(run.Config(RuntimeEstimator))
            pretrain_cfg.trainer.callbacks.append(run.Config(OptimizerMonitor))
            pretrain_cfg.trainer.callbacks.append(run.Config(MemoryMonitor))

        pretrain = fdl.build(pretrain_cfg)
        pretrain()
    else:
        # # Get Auto Configurator results
        get_results(base_cfg, runner, args.log_dir, log_file_prefix="nemo_error")
        print(f"The results were successfully saved to {args.log_dir}.")


def main():
    args = get_args()
    train_config(args)


if __name__ == '__main__':
    main()