Spaces:
Runtime error
Runtime error
File size: 10,194 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Optional
import lightning.pytorch as pl
import nemo_run as run
import torch
from lightning.pytorch.callbacks.callback import Callback
from megatron.core.distributed import DistributedDataParallelConfig
from nemo import lightning as nl
from nemo.collections import llm
from nemo.collections.llm.api import pretrain
from nemo.collections.llm.gpt.data.mock import MockDataModule
from nemo.collections.llm.gpt.model.llama import Llama31Config70B, LlamaModel
from nemo.collections.llm.recipes.log.default import default_log, default_resume, tensorboard_logger
from nemo.collections.llm.recipes.optim.adam import distributed_fused_adam_with_cosine_annealing
from nemo.collections.llm.recipes.precision.mixed_precision import bf16_mixed
from nemo.collections.llm.recipes.tp_overlap_configs.userbuffers import (
userbuffers_bf16_h100_h16384_tp8_cp2_mbs1_seqlen8192,
)
from nemo.lightning.pytorch.callbacks.megatron_comm_overlap import MegatronCommOverlapCallback
from nemo.utils.exp_manager import TimingCallback
NAME = "llama31_70b_multi_dc"
@run.cli.factory(name=NAME)
def model() -> run.Config[pl.LightningModule]:
"""
Factory function to create a Llama3.1 70B model configuration.
Returns:
run.Config[pl.LightningModule]: Configuration for the Llama3.1 70B model.
Examples:
CLI usage:
$ nemo llm pretrain model=llama31_70b ...
Python API usage:
>>> model_config = model()
>>> print(model_config)
"""
conf = run.Config(Llama31Config70B)
conf.seq_length = 8192
return run.Config(LlamaModel, config=conf)
def trainer(
tensor_parallelism: int = 4,
pipeline_parallelism: int = 4,
pipeline_parallelism_type: Optional[torch.dtype] = torch.bfloat16,
virtual_pipeline_parallelism: Optional[int] = 5,
context_parallelism: int = 2,
sequence_parallelism: bool = True,
num_nodes: int = 8,
num_gpus_per_node: int = 8,
max_steps: int = 1168251,
num_distributed_optimizer_instances: int = 1,
nccl_communicator_config_path: Optional[str] = None,
callbacks: Optional[list[run.Config[Callback]]] = None,
) -> run.Config[nl.Trainer]:
"""
Configure the NeMo Lightning Trainer for Llama3.1 70B model.
This function sets up the distributed training strategy optimized for the large 70B model.
Args:
tensor_parallelism (int): Degree of tensor model parallelism.
pipeline_parallelism (int): Degree of pipeline model parallelism.
pipeline_parallelism_type (Optional[torch.dtype]): Data type for pipeline parallelism.
virtual_pipeline_parallelism (Optional[int]): Size of virtual pipeline parallelism.
context_parallelism (int): Degree of context parallelism.
sequence_parallelism (bool): Whether to use sequence parallelism.
num_nodes (int): Number of compute nodes to use.
num_gpus_per_node (int): Number of GPUs per node.
max_steps (int): Maximum number of training steps.
callbacks (Optional[list[run.Config[Callback]]]): List of callback configurations.
Returns:
run.Config[nl.Trainer]: Configuration for the NeMo Lightning Trainer.
Examples:
CLI usage:
$ nemo llm pretrain trainer=llama31_70b ...
Python API usage:
>>> trainer_config = trainer(num_nodes=4, num_gpus_per_node=8)
>>> print(trainer_config)
Note:
This configuration uses extensive parallelism to handle the large model size efficiently.
"""
strategy = run.Config(
nl.MegatronStrategy,
tensor_model_parallel_size=tensor_parallelism,
pipeline_model_parallel_size=pipeline_parallelism,
pipeline_dtype=pipeline_parallelism_type,
virtual_pipeline_model_parallel_size=virtual_pipeline_parallelism,
context_parallel_size=context_parallelism,
sequence_parallel=sequence_parallelism,
gradient_as_bucket_view=True,
ckpt_async_save=True,
ckpt_parallel_load=True,
num_distributed_optimizer_instances=num_distributed_optimizer_instances,
nccl_communicator_config_path=nccl_communicator_config_path,
ddp=run.Config(
DistributedDataParallelConfig,
check_for_nan_in_grad=True,
grad_reduce_in_fp32=True,
overlap_grad_reduce=True,
overlap_param_gather=True,
average_in_collective=True,
),
)
trainer = run.Config(
nl.Trainer,
accelerator="gpu",
accumulate_grad_batches=1,
callbacks=callbacks,
devices=num_gpus_per_node,
limit_test_batches=50,
limit_val_batches=32,
log_every_n_steps=10,
max_steps=max_steps,
num_nodes=num_nodes,
plugins=bf16_mixed(),
strategy=strategy,
use_distributed_sampler=False,
val_check_interval=2000,
)
return trainer
@run.cli.factory(target=pretrain, name=NAME)
def pretrain_recipe(
dir: Optional[str] = None,
name: str = "default",
num_nodes: int = 8,
num_gpus_per_node: int = 8,
num_distributed_optimizer_instances: int = 1,
nccl_communicator_config_path: Optional[str] = None,
performance_mode: bool = False,
fn: Callable = pretrain,
) -> run.Partial:
"""
Create a pre-training recipe for Llama3.1 70B model.
This function sets up a complete configuration for pre-training, including
model, trainer, data, logging, optimization, and resumption settings.
Args:
dir (Optional[str]): Directory for saving logs and checkpoints.
name (str): Name of the pre-training run.
num_nodes (int): Number of compute nodes to use.
num_gpus_per_node (int): Number of GPUs per node.
num_distributed_optimizer_instances (int): Number of distributed optimizer instances to use.
nccl_communicator_config_path (Optional[str]): Path to the NCCL communicator configuration file.
performance_mode (bool): If true, enables optimizations for maximum performance.
fn (Callable): The pre-training function to use.
Returns:
run.Partial: Partial configuration for pre-training.
Examples:
CLI usage:
$ nemo llm pretrain --factory llama31_70b
$ nemo llm pretrain --factory "llama31_70b(num_nodes=4, name='my_70b_pretrain')"
Python API usage:
>>> recipe = pretrain_recipe(name="llama31_70b_pretrain", num_nodes=4)
>>> print(recipe)
Note:
This recipe is optimized for the large 70B model and requires significant computational resources.
"""
recipe = run.Partial(
fn,
model=model(),
trainer=trainer(
num_nodes=num_nodes,
num_gpus_per_node=num_gpus_per_node,
num_distributed_optimizer_instances=num_distributed_optimizer_instances,
nccl_communicator_config_path=nccl_communicator_config_path,
callbacks=[run.Config(TimingCallback)],
),
data=run.Config(MockDataModule, seq_length=8192, global_batch_size=512, micro_batch_size=1),
log=default_log(dir=dir, name=name, tensorboard_logger=tensorboard_logger(name=name)),
optim=distributed_fused_adam_with_cosine_annealing(max_lr=3e-4),
resume=default_resume(),
)
if performance_mode:
recipe = pretrain_performance_optimizations(recipe)
return recipe
def pretrain_performance_optimizations(recipe: run.Partial) -> run.Partial:
"""
Create a performance-optimized pre-training recipe for Llama3.1 70B model.
This method enables performance optimizations that may not be suitable for all use cases.
It builds upon the standard pre-training recipe and adds additional performance enhancements.
Args:
recipe (run.Partial): Base pre-train recipe to which performance optimizations will be added
Returns:
run.Partial: Partial configuration for performance-optimized pre-training.
Note:
Use this method with caution and only when you need maximum performance.
It may not be suitable for all hardware configurations or use cases.
"""
# 'overlap_param_gather_with_optimizer_step' and 'align_param_gather' params are set automatically
# by MegatronCommOverlapCallback. They are added here for user's knowledge.
# overlap_param_gather_with_optimizer_step- Overlap param all-gather of first bucket with optimizer step.
# align_param_gather- If true, all PP stages launch param all-gathers simultaneously, else
# each PP stage launches independently as needed.
recipe.trainer.callbacks.append(
run.Config(
MegatronCommOverlapCallback,
tp_comm_overlap=True,
tp_comm_overlap_cfg=userbuffers_bf16_h100_h16384_tp8_cp2_mbs1_seqlen8192,
defer_embedding_wgrad_compute=True,
wgrad_deferral_limit=50,
overlap_param_gather_with_optimizer_step=False, # Currently disabled due to an issue with checkpointing
align_param_gather=True,
)
)
return recipe
def multi_dc_recipe(nodes: int = 8, gpus_per_node: int = 8):
pretrain = pretrain_recipe(
num_nodes=nodes,
num_gpus_per_node=gpus_per_node,
num_distributed_optimizer_instances=2,
nccl_communicator_config_path="/opt/NeMo/examples/llm/pretrain/multi_dc_nccl_communicator_config.yaml",
)
return pretrain
if __name__ == "__main__":
run.cli.main(llm.pretrain, default_factory=multi_dc_recipe)
|