File size: 10,194 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# Copyright (c) 2025, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Callable, Optional

import lightning.pytorch as pl
import nemo_run as run
import torch
from lightning.pytorch.callbacks.callback import Callback
from megatron.core.distributed import DistributedDataParallelConfig

from nemo import lightning as nl
from nemo.collections import llm
from nemo.collections.llm.api import pretrain
from nemo.collections.llm.gpt.data.mock import MockDataModule
from nemo.collections.llm.gpt.model.llama import Llama31Config70B, LlamaModel
from nemo.collections.llm.recipes.log.default import default_log, default_resume, tensorboard_logger
from nemo.collections.llm.recipes.optim.adam import distributed_fused_adam_with_cosine_annealing
from nemo.collections.llm.recipes.precision.mixed_precision import bf16_mixed
from nemo.collections.llm.recipes.tp_overlap_configs.userbuffers import (
    userbuffers_bf16_h100_h16384_tp8_cp2_mbs1_seqlen8192,
)
from nemo.lightning.pytorch.callbacks.megatron_comm_overlap import MegatronCommOverlapCallback
from nemo.utils.exp_manager import TimingCallback

NAME = "llama31_70b_multi_dc"


@run.cli.factory(name=NAME)
def model() -> run.Config[pl.LightningModule]:
    """
    Factory function to create a Llama3.1 70B model configuration.

    Returns:
        run.Config[pl.LightningModule]: Configuration for the Llama3.1 70B model.

    Examples:
        CLI usage:
            $ nemo llm pretrain model=llama31_70b ...

        Python API usage:
            >>> model_config = model()
            >>> print(model_config)
    """
    conf = run.Config(Llama31Config70B)
    conf.seq_length = 8192
    return run.Config(LlamaModel, config=conf)


def trainer(
    tensor_parallelism: int = 4,
    pipeline_parallelism: int = 4,
    pipeline_parallelism_type: Optional[torch.dtype] = torch.bfloat16,
    virtual_pipeline_parallelism: Optional[int] = 5,
    context_parallelism: int = 2,
    sequence_parallelism: bool = True,
    num_nodes: int = 8,
    num_gpus_per_node: int = 8,
    max_steps: int = 1168251,
    num_distributed_optimizer_instances: int = 1,
    nccl_communicator_config_path: Optional[str] = None,
    callbacks: Optional[list[run.Config[Callback]]] = None,
) -> run.Config[nl.Trainer]:
    """
    Configure the NeMo Lightning Trainer for Llama3.1 70B model.

    This function sets up the distributed training strategy optimized for the large 70B model.

    Args:
        tensor_parallelism (int): Degree of tensor model parallelism.
        pipeline_parallelism (int): Degree of pipeline model parallelism.
        pipeline_parallelism_type (Optional[torch.dtype]): Data type for pipeline parallelism.
        virtual_pipeline_parallelism (Optional[int]): Size of virtual pipeline parallelism.
        context_parallelism (int): Degree of context parallelism.
        sequence_parallelism (bool): Whether to use sequence parallelism.
        num_nodes (int): Number of compute nodes to use.
        num_gpus_per_node (int): Number of GPUs per node.
        max_steps (int): Maximum number of training steps.
        callbacks (Optional[list[run.Config[Callback]]]): List of callback configurations.

    Returns:
        run.Config[nl.Trainer]: Configuration for the NeMo Lightning Trainer.

    Examples:
        CLI usage:
            $ nemo llm pretrain trainer=llama31_70b ...

        Python API usage:
            >>> trainer_config = trainer(num_nodes=4, num_gpus_per_node=8)
            >>> print(trainer_config)

    Note:
        This configuration uses extensive parallelism to handle the large model size efficiently.
    """
    strategy = run.Config(
        nl.MegatronStrategy,
        tensor_model_parallel_size=tensor_parallelism,
        pipeline_model_parallel_size=pipeline_parallelism,
        pipeline_dtype=pipeline_parallelism_type,
        virtual_pipeline_model_parallel_size=virtual_pipeline_parallelism,
        context_parallel_size=context_parallelism,
        sequence_parallel=sequence_parallelism,
        gradient_as_bucket_view=True,
        ckpt_async_save=True,
        ckpt_parallel_load=True,
        num_distributed_optimizer_instances=num_distributed_optimizer_instances,
        nccl_communicator_config_path=nccl_communicator_config_path,
        ddp=run.Config(
            DistributedDataParallelConfig,
            check_for_nan_in_grad=True,
            grad_reduce_in_fp32=True,
            overlap_grad_reduce=True,
            overlap_param_gather=True,
            average_in_collective=True,
        ),
    )

    trainer = run.Config(
        nl.Trainer,
        accelerator="gpu",
        accumulate_grad_batches=1,
        callbacks=callbacks,
        devices=num_gpus_per_node,
        limit_test_batches=50,
        limit_val_batches=32,
        log_every_n_steps=10,
        max_steps=max_steps,
        num_nodes=num_nodes,
        plugins=bf16_mixed(),
        strategy=strategy,
        use_distributed_sampler=False,
        val_check_interval=2000,
    )

    return trainer


@run.cli.factory(target=pretrain, name=NAME)
def pretrain_recipe(
    dir: Optional[str] = None,
    name: str = "default",
    num_nodes: int = 8,
    num_gpus_per_node: int = 8,
    num_distributed_optimizer_instances: int = 1,
    nccl_communicator_config_path: Optional[str] = None,
    performance_mode: bool = False,
    fn: Callable = pretrain,
) -> run.Partial:
    """
    Create a pre-training recipe for Llama3.1 70B model.

    This function sets up a complete configuration for pre-training, including
    model, trainer, data, logging, optimization, and resumption settings.

    Args:
        dir (Optional[str]): Directory for saving logs and checkpoints.
        name (str): Name of the pre-training run.
        num_nodes (int): Number of compute nodes to use.
        num_gpus_per_node (int): Number of GPUs per node.
        num_distributed_optimizer_instances (int): Number of distributed optimizer instances to use.
        nccl_communicator_config_path (Optional[str]): Path to the NCCL communicator configuration file.
        performance_mode (bool): If true, enables optimizations for maximum performance.
        fn (Callable): The pre-training function to use.
    Returns:
        run.Partial: Partial configuration for pre-training.

    Examples:
        CLI usage:
            $ nemo llm pretrain --factory llama31_70b
            $ nemo llm pretrain --factory "llama31_70b(num_nodes=4, name='my_70b_pretrain')"

        Python API usage:
            >>> recipe = pretrain_recipe(name="llama31_70b_pretrain", num_nodes=4)
            >>> print(recipe)

    Note:
        This recipe is optimized for the large 70B model and requires significant computational resources.
    """
    recipe = run.Partial(
        fn,
        model=model(),
        trainer=trainer(
            num_nodes=num_nodes,
            num_gpus_per_node=num_gpus_per_node,
            num_distributed_optimizer_instances=num_distributed_optimizer_instances,
            nccl_communicator_config_path=nccl_communicator_config_path,
            callbacks=[run.Config(TimingCallback)],
        ),
        data=run.Config(MockDataModule, seq_length=8192, global_batch_size=512, micro_batch_size=1),
        log=default_log(dir=dir, name=name, tensorboard_logger=tensorboard_logger(name=name)),
        optim=distributed_fused_adam_with_cosine_annealing(max_lr=3e-4),
        resume=default_resume(),
    )

    if performance_mode:
        recipe = pretrain_performance_optimizations(recipe)

    return recipe


def pretrain_performance_optimizations(recipe: run.Partial) -> run.Partial:
    """
    Create a performance-optimized pre-training recipe for Llama3.1 70B model.

    This method enables performance optimizations that may not be suitable for all use cases.
    It builds upon the standard pre-training recipe and adds additional performance enhancements.

    Args:
        recipe (run.Partial): Base pre-train recipe to which performance optimizations will be added

    Returns:
        run.Partial: Partial configuration for performance-optimized pre-training.

    Note:
        Use this method with caution and only when you need maximum performance.
        It may not be suitable for all hardware configurations or use cases.
    """

    # 'overlap_param_gather_with_optimizer_step' and 'align_param_gather' params are set automatically
    # by MegatronCommOverlapCallback. They are added here for user's knowledge.
    # overlap_param_gather_with_optimizer_step- Overlap param all-gather of first bucket with optimizer step.
    # align_param_gather- If true, all PP stages launch param all-gathers simultaneously, else
    # each PP stage launches independently as needed.

    recipe.trainer.callbacks.append(
        run.Config(
            MegatronCommOverlapCallback,
            tp_comm_overlap=True,
            tp_comm_overlap_cfg=userbuffers_bf16_h100_h16384_tp8_cp2_mbs1_seqlen8192,
            defer_embedding_wgrad_compute=True,
            wgrad_deferral_limit=50,
            overlap_param_gather_with_optimizer_step=False,  # Currently disabled due to an issue with checkpointing
            align_param_gather=True,
        )
    )

    return recipe


def multi_dc_recipe(nodes: int = 8, gpus_per_node: int = 8):
    pretrain = pretrain_recipe(
        num_nodes=nodes,
        num_gpus_per_node=gpus_per_node,
        num_distributed_optimizer_instances=2,
        nccl_communicator_config_path="/opt/NeMo/examples/llm/pretrain/multi_dc_nccl_communicator_config.yaml",
    )

    return pretrain


if __name__ == "__main__":
    run.cli.main(llm.pretrain, default_factory=multi_dc_recipe)