File size: 6,051 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright (c) 2025, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from time import perf_counter
from typing import Optional

import lhotse.dataset
import torch
from lhotse import CutSet
from lhotse.serialization import SequentialJsonlWriter
from omegaconf import OmegaConf
from transformers import GenerationConfig
from whisper_normalizer.basic import BasicTextNormalizer
from whisper_normalizer.english import EnglishTextNormalizer

from nemo.collections.asr.metrics.wer import word_error_rate_detail
from nemo.collections.common.data.lhotse.cutset import guess_parse_cutset
from nemo.collections.speechlm2 import SALM
from nemo.core.config import hydra_runner
from nemo.utils import logging


class ToAudio(torch.utils.data.Dataset):
    def __getitem__(self, cuts: CutSet):
        audios, audio_lens = cuts.load_audio(collate=True)
        return {"cuts": cuts, "audios": audios, "audio_lens": audio_lens}


@dataclass
class SalmEvalConfig:
    pretrained_name: str
    inputs: str
    batch_size: int = 64
    max_new_tokens: int = 128
    output_manifest: Optional[str] = "generations.jsonl"
    verbose: bool = True
    use_normalizer: Optional[str] = "english"  # "english", "basic", or "none" / "None"
    device: str = "cuda"
    dtype: str = "bfloat16"
    extra_eos_tokens: Optional[list[str]] = None
    system_prompt: Optional[str] = None
    user_prompt: Optional[str] = None


@hydra_runner(config_name="SalmEvalConfig", schema=SalmEvalConfig)
def main(cfg: SalmEvalConfig):
    logging.info(f'Hydra config:\n{OmegaConf.to_yaml(cfg)}')

    model = SALM.from_pretrained(cfg.pretrained_name).eval().to(getattr(torch, cfg.dtype)).to(cfg.device)

    cuts = guess_parse_cutset(cfg.inputs).sort_by_duration()
    dloader = torch.utils.data.DataLoader(
        dataset=ToAudio(),
        sampler=lhotse.dataset.DynamicCutSampler(cuts, max_cuts=cfg.batch_size),
        num_workers=1,
        batch_size=None,
    )

    normalizer = {"english": EnglishTextNormalizer(), "basic": BasicTextNormalizer()}.get(
        cfg.use_normalizer, lambda x: x
    )

    eos_tokens = [model.text_eos_id]
    if cfg.extra_eos_tokens is not None:
        for t in cfg.extra_eos_tokens:
            tid = model.tokenizer.token_to_id(t)
            assert tid is not None, f"Token '{t}' is not in the model's vocabulary."
            eos_tokens.append(tid)

    # Construct the prompt from ASR data of the form.
    # Optional system prompt goes first.
    prompt = []
    if cfg.system_prompt is not None:
        prompt.append({"role": "system", "content": cfg.system_prompt})
    # If no user prompt is provided, just use the audio placeholder.
    content = model.audio_locator_tag
    # Otherwise:
    # * if user prompt already has audio placeholder, add it as-is,
    # * if not, append audio placeholder at the end of user prompt
    if cfg.user_prompt is not None:
        content = cfg.user_prompt
        if model.audio_locator_tag not in content:
            content = f"{content} {model.audio_locator_tag}"
    prompt.append({"role": "user", "content": content})

    refs = []
    hyps = []
    input_durations = []
    infer_durations = []
    for batch_idx, batch in enumerate(dloader):
        ts = perf_counter()
        answer_ids = model.generate(
            prompts=[prompt] * len(batch["cuts"]),  # identical prompt for each example
            audios=batch["audios"].to(model.device, non_blocking=True),
            audio_lens=batch["audio_lens"].to(model.device, non_blocking=True),
            generation_config=GenerationConfig(
                max_new_tokens=cfg.max_new_tokens,
                bos_token_id=model.text_bos_id,
                eos_token_id=eos_tokens,
                pad_token_id=model.text_pad_id,
            ),
        )
        answer_ids = answer_ids.cpu()
        batch_infer_duration = perf_counter() - ts

        batch_duration = sum(c.duration for c in batch["cuts"])
        batch_refs = [normalizer(cut.supervisions[0].text) for cut in batch["cuts"]]
        batch_hyps = [
            normalizer(model.tokenizer.ids_to_text(parse_hyp(ans, eos_tokens)).strip()) for ans in answer_ids
        ]
        if cfg.verbose:
            batch_wer, _, nins, ndel, nsub = word_error_rate_detail(batch_hyps, batch_refs)
            batch_rtfx = batch_duration / batch_infer_duration
            logging.info(
                f"Batch {batch_idx}: WER={batch_wer:.2%} [ins={nins:.2%} del={ndel:.2%} sub={nsub:.2%}] RTFx={batch_rtfx:.1f}"
            )

        refs.extend(batch_refs)
        hyps.extend(batch_hyps)
        input_durations.append(batch_duration)
        infer_durations.append(batch_infer_duration)

    wer, _, nins, ndel, nsub = word_error_rate_detail(hypotheses=hyps, references=refs, use_cer=False)
    rtfx = sum(input_durations) / sum(infer_durations)
    logging.info(f"WER: {wer:.2%} [ins={nins:.2%} del={ndel:.2%} sub={nsub:.2%}]")
    logging.info(f"RTFx: {rtfx:.1f}")

    if cfg.output_manifest is not None:
        with SequentialJsonlWriter(cfg.output_manifest) as writer:
            for cut, ref, hyp in zip(cuts, refs, hyps):
                writer.write({"id": cut.id, "duration": cut.duration, "text": ref, "pred_text": hyp})


def parse_hyp(answer: torch.Tensor, eos_tokens: list[int]):
    end = torch.isin(answer, torch.tensor(eos_tokens)).nonzero(as_tuple=True)[0]
    if end.numel() == 0:
        return answer
    end = end[0]
    return answer[:end]


if __name__ == '__main__':
    main()