Spaces:
Runtime error
Runtime error
File size: 10,454 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import numpy as np
import omegaconf
import torch
from hydra.utils import instantiate
from lightning.pytorch import Trainer
from lightning.pytorch.loggers import WandbLogger
from omegaconf import DictConfig
from torch import nn
from nemo.collections.tts.losses.aligner_loss import BinLoss, ForwardSumLoss
from nemo.collections.tts.models.base import NeedsNormalizer
from nemo.collections.tts.parts.utils.helpers import (
binarize_attention,
g2p_backward_compatible_support,
get_mask_from_lengths,
plot_alignment_to_numpy,
)
from nemo.core.classes import ModelPT
from nemo.core.classes.common import PretrainedModelInfo
from nemo.utils import logging, model_utils
HAVE_WANDB = True
try:
import wandb
except ModuleNotFoundError:
HAVE_WANDB = False
class AlignerModel(NeedsNormalizer, ModelPT):
"""Speech-to-text alignment model (https://arxiv.org/pdf/2108.10447.pdf) that is used to learn alignments between mel spectrogram and text."""
def __init__(self, cfg: DictConfig, trainer: 'Trainer' = None):
# Convert to Hydra 1.0 compatible DictConfig
cfg = model_utils.convert_model_config_to_dict_config(cfg)
cfg = model_utils.maybe_update_config_version(cfg)
# Setup normalizer
self.normalizer = None
self.text_normalizer_call = None
self.text_normalizer_call_kwargs = {}
self._setup_normalizer(cfg)
# Setup tokenizer
self.tokenizer = None
self._setup_tokenizer(cfg)
assert self.tokenizer is not None
num_tokens = len(self.tokenizer.tokens)
self.tokenizer_pad = self.tokenizer.pad
self.tokenizer_unk = self.tokenizer.oov
super().__init__(cfg=cfg, trainer=trainer)
self.embed = nn.Embedding(num_tokens, cfg.symbols_embedding_dim)
self.preprocessor = instantiate(cfg.preprocessor)
self.alignment_encoder = instantiate(cfg.alignment_encoder)
self.forward_sum_loss = ForwardSumLoss()
self.bin_loss = BinLoss()
self.add_bin_loss = False
self.bin_loss_scale = 0.0
self.bin_loss_start_ratio = cfg.bin_loss_start_ratio
self.bin_loss_warmup_epochs = cfg.bin_loss_warmup_epochs
def _setup_tokenizer(self, cfg):
text_tokenizer_kwargs = {}
if "g2p" in cfg.text_tokenizer:
# for backward compatibility
if (
self._is_model_being_restored()
and (cfg.text_tokenizer.g2p.get('_target_', None) is not None)
and cfg.text_tokenizer.g2p["_target_"].startswith("nemo_text_processing.g2p")
):
cfg.text_tokenizer.g2p["_target_"] = g2p_backward_compatible_support(
cfg.text_tokenizer.g2p["_target_"]
)
g2p_kwargs = {}
if "phoneme_dict" in cfg.text_tokenizer.g2p:
g2p_kwargs["phoneme_dict"] = self.register_artifact(
'text_tokenizer.g2p.phoneme_dict',
cfg.text_tokenizer.g2p.phoneme_dict,
)
if "heteronyms" in cfg.text_tokenizer.g2p:
g2p_kwargs["heteronyms"] = self.register_artifact(
'text_tokenizer.g2p.heteronyms',
cfg.text_tokenizer.g2p.heteronyms,
)
text_tokenizer_kwargs["g2p"] = instantiate(cfg.text_tokenizer.g2p, **g2p_kwargs)
self.tokenizer = instantiate(cfg.text_tokenizer, **text_tokenizer_kwargs)
def forward(self, *, spec, spec_len, text, text_len, attn_prior=None):
with torch.amp.autocast(self.device.type, enabled=False):
attn_soft, attn_logprob = self.alignment_encoder(
queries=spec,
keys=self.embed(text).transpose(1, 2),
mask=get_mask_from_lengths(text_len).unsqueeze(-1) == 0,
attn_prior=attn_prior,
)
return attn_soft, attn_logprob
def _metrics(self, attn_soft, attn_logprob, spec_len, text_len):
loss, bin_loss, attn_hard = 0.0, None, None
forward_sum_loss = self.forward_sum_loss(attn_logprob=attn_logprob, in_lens=text_len, out_lens=spec_len)
loss += forward_sum_loss
if self.add_bin_loss:
attn_hard = binarize_attention(attn_soft, text_len, spec_len)
bin_loss = self.bin_loss(hard_attention=attn_hard, soft_attention=attn_soft)
loss += bin_loss
return loss, forward_sum_loss, bin_loss, attn_hard
def on_train_epoch_start(self):
bin_loss_start_epoch = np.ceil(self.bin_loss_start_ratio * self._trainer.max_epochs)
# Add bin loss when current_epoch >= bin_start_epoch
if not self.add_bin_loss and self.current_epoch >= bin_loss_start_epoch:
logging.info(f"Using hard attentions after epoch: {self.current_epoch}")
self.add_bin_loss = True
if self.add_bin_loss:
self.bin_loss_scale = min((self.current_epoch - bin_loss_start_epoch) / self.bin_loss_warmup_epochs, 1.0)
def training_step(self, batch, batch_idx):
audio, audio_len, text, text_len, attn_prior = batch
spec, spec_len = self.preprocessor(input_signal=audio, length=audio_len)
attn_soft, attn_logprob = self(
spec=spec, spec_len=spec_len, text=text, text_len=text_len, attn_prior=attn_prior
)
loss, forward_sum_loss, bin_loss, _ = self._metrics(attn_soft, attn_logprob, spec_len, text_len)
train_log = {
'train_forward_sum_loss': forward_sum_loss,
'train_bin_loss': torch.tensor(1.0).to(forward_sum_loss.device) if bin_loss is None else bin_loss,
}
return {'loss': loss, 'progress_bar': {k: v.detach() for k, v in train_log.items()}, 'log': train_log}
def validation_step(self, batch, batch_idx):
audio, audio_len, text, text_len, attn_prior = batch
spec, spec_len = self.preprocessor(input_signal=audio, length=audio_len)
attn_soft, attn_logprob = self(
spec=spec, spec_len=spec_len, text=text, text_len=text_len, attn_prior=attn_prior
)
loss, forward_sum_loss, bin_loss, attn_hard = self._metrics(attn_soft, attn_logprob, spec_len, text_len)
# plot once per epoch
if batch_idx == 0 and isinstance(self.logger, WandbLogger) and HAVE_WANDB:
if attn_hard is None:
attn_hard = binarize_attention(attn_soft, text_len, spec_len)
attn_matrices = []
for i in range(min(5, audio.shape[0])):
attn_matrices.append(
wandb.Image(
plot_alignment_to_numpy(
np.fliplr(np.rot90(attn_soft[i, 0, : spec_len[i], : text_len[i]].data.cpu().numpy()))
),
caption=f"attn soft",
),
)
attn_matrices.append(
wandb.Image(
plot_alignment_to_numpy(
np.fliplr(np.rot90(attn_hard[i, 0, : spec_len[i], : text_len[i]].data.cpu().numpy()))
),
caption=f"attn hard",
)
)
self.logger.experiment.log({"attn_matrices": attn_matrices})
val_log = {
'val_loss': loss,
'val_forward_sum_loss': forward_sum_loss,
'val_bin_loss': torch.tensor(1.0).to(forward_sum_loss.device) if bin_loss is None else bin_loss,
}
self.log_dict(val_log, prog_bar=False, on_epoch=True, logger=True, sync_dist=True)
def _loader(self, cfg):
try:
_ = cfg.dataset.manifest_filepath
except omegaconf.errors.MissingMandatoryValue:
logging.warning("manifest_filepath was skipped. No dataset for this model.")
return None
dataset = instantiate(
cfg.dataset,
text_normalizer=self.normalizer,
text_normalizer_call_kwargs=self.text_normalizer_call_kwargs,
text_tokenizer=self.tokenizer,
)
return torch.utils.data.DataLoader( # noqa
dataset=dataset,
collate_fn=dataset.collate_fn,
**cfg.dataloader_params,
)
def setup_training_data(self, cfg):
self._train_dl = self._loader(cfg)
def setup_validation_data(self, cfg):
self._validation_dl = self._loader(cfg)
def setup_test_data(self, cfg):
"""Omitted."""
pass
@classmethod
def list_available_models(cls) -> List[PretrainedModelInfo]:
"""
This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud.
Returns:
List of available pre-trained models.
"""
list_of_models = []
# en-US, ARPABET-based
model = PretrainedModelInfo(
pretrained_model_name="tts_en_radtts_aligner",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_radtts_aligner/versions/ARPABET_1.11.0/files/Aligner.nemo",
description="This model is trained on LJSpeech sampled at 22050Hz with and can be used to align text and audio.",
class_=cls,
)
list_of_models.append(model)
# en-US, IPA-based
model = PretrainedModelInfo(
pretrained_model_name="tts_en_radtts_aligner_ipa",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_radtts_aligner/versions/IPA_1.13.0/files/Aligner.nemo",
description="This model is trained on LJSpeech sampled at 22050Hz with and can be used to align text and audio.",
class_=cls,
)
list_of_models.append(model)
return list_of_models
|