File size: 38,824 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import itertools
from math import ceil
from pathlib import Path
from typing import List, Tuple

import torch
import torch.nn.functional as F
from einops import rearrange
from hydra.utils import instantiate
from lightning.pytorch import Trainer
from omegaconf import DictConfig, OmegaConf, open_dict

from nemo.collections.tts.losses.audio_codec_loss import (
    FeatureMatchingLoss,
    MultiResolutionMelLoss,
    MultiResolutionSTFTLoss,
    RelativeFeatureMatchingLoss,
    SISDRLoss,
    TimeDomainLoss,
)
from nemo.collections.tts.modules.audio_codec_modules import ResNetSpeakerEncoder, default_precision
from nemo.collections.tts.modules.common import GaussianDropout
from nemo.collections.tts.parts.utils.callbacks import LoggingCallback
from nemo.collections.tts.parts.utils.helpers import get_batch_size, get_num_workers
from nemo.core import ModelPT
from nemo.core.classes.common import PretrainedModelInfo, typecheck
from nemo.core.neural_types.elements import AudioSignal, EncodedRepresentation, LengthsType, TokenIndex
from nemo.core.neural_types.neural_type import NeuralType
from nemo.core.optim.lr_scheduler import compute_max_steps, prepare_lr_scheduler
from nemo.utils import logging, model_utils

try:
    import torchaudio

    HAVE_TORCHAUDIO = True
except ModuleNotFoundError:
    HAVE_TORCHAUDIO = False


class AudioCodecModel(ModelPT):
    def __init__(self, cfg: DictConfig, trainer: Trainer = None):
        # Convert to Hydra 1.0 compatible DictConfig
        cfg = model_utils.convert_model_config_to_dict_config(cfg)
        cfg = model_utils.maybe_update_config_version(cfg)
        self.world_size = 1
        if trainer is not None:
            self.world_size = trainer.num_nodes * trainer.num_devices

        super().__init__(cfg=cfg, trainer=trainer)

        # Expected sample rate for the input audio
        self.sample_rate = cfg.sample_rate

        # Number of samples in each audio frame that is encoded
        self.samples_per_frame = cfg.samples_per_frame

        # Discriminator updates
        self.disc_updates_per_period = cfg.get("disc_updates_per_period", 1)
        self.disc_update_period = cfg.get("disc_update_period", 1)
        if self.disc_updates_per_period > self.disc_update_period:
            raise ValueError(
                f'Number of discriminator updates ({self.disc_updates_per_period}) per period must be less or equal to the configured period ({self.disc_update_period})'
            )

        # Encoder setup
        self.audio_encoder = instantiate(cfg.audio_encoder)

        # Optionally, add gaussian noise to encoder output as an information bottleneck
        encoder_noise_stdev = cfg.get("encoder_noise_stdev", 0.0)
        if encoder_noise_stdev:
            self.encoder_noise = GaussianDropout(stdev=encoder_noise_stdev)
        else:
            self.encoder_noise = None

        if "vector_quantizer" in cfg:
            self.vector_quantizer = instantiate(cfg.vector_quantizer)

            vq_output_types = list(self.vector_quantizer.output_types.keys())

            if len(vq_output_types) == 3 and vq_output_types[-1] == 'commit_loss':
                self.vector_quantizer_has_commit_loss = True
                logging.info('Vector quantizer supports commit loss.')
            else:
                self.vector_quantizer_has_commit_loss = False
                logging.info('Vector quantizer does not support commit loss.')

        else:
            logging.warning('Vector quantizer will not be used.')
            self.vector_quantizer = None

        # Decoder setup
        self.audio_decoder = instantiate(cfg.audio_decoder)

        # Discriminator setup
        self.discriminator = instantiate(cfg.discriminator)

        # Mel loss setup
        loss_resolutions = cfg.loss_resolutions
        mel_loss_dims = cfg.get("mel_loss_dims")
        mel_loss_log_guard = cfg.get("mel_loss_log_guard", 1.0)
        self.mel_loss_l1_scale = cfg.get("mel_loss_l1_scale", 1.0)
        self.mel_loss_l2_scale = cfg.get("mel_loss_l2_scale", 1.0)
        self.mel_loss_fn = MultiResolutionMelLoss(
            sample_rate=self.sample_rate,
            mel_dims=mel_loss_dims,
            resolutions=loss_resolutions,
            log_guard=mel_loss_log_guard,
        )

        # STFT loss setup
        stft_loss_log_guard = cfg.get("stft_loss_log_guard", 1.0)
        self.stft_loss_scale = cfg.get("stft_loss_scale", 0.0)
        self.stft_loss_fn = MultiResolutionSTFTLoss(
            resolutions=loss_resolutions,
            log_guard=stft_loss_log_guard,
        )

        # Time domain loss setup
        self.time_domain_loss_scale = cfg.get("time_domain_loss_scale", 1.0)
        self.si_sdr_loss_scale = cfg.get("si_sdr_loss_scale", 0.0)
        self.time_domain_loss_fn = TimeDomainLoss()
        self.si_sdr_loss_fn = SISDRLoss()

        # Discriminator loss setup
        self.gen_loss_scale = cfg.get("gen_loss_scale", 1.0)
        self.feature_loss_scale = cfg.get("feature_loss_scale", 1.0)
        self.gen_loss_fn = instantiate(cfg.generator_loss)
        self.disc_loss_fn = instantiate(cfg.discriminator_loss)

        self.mmd_loss_start_epoch = cfg.get("mmd_loss_start_epoch", 0)

        if "mmd_loss" in cfg:
            self.mmd_loss_fn = instantiate(cfg.mmd_loss)
            self.mmd_loss_scale = cfg.get("mmd_loss_scale", 1.0)
        else:
            self.mmd_loss_fn = None
            self.mmd_loss_scale = None

        if "mmd_time_loss" in cfg:
            self.mmd_time_loss_fn = instantiate(cfg.mmd_time_loss)
            self.mmd_time_loss_scale = cfg.get("mmd_time_loss_scale", 1.0)
        else:
            self.mmd_time_loss_fn = None
            self.mmd_time_loss_scale = None

        feature_loss_type = cfg.get("feature_loss_type", "relative")
        if feature_loss_type == "relative":
            self.feature_loss_fn = RelativeFeatureMatchingLoss()
        elif feature_loss_type == "absolute":
            self.feature_loss_fn = FeatureMatchingLoss()
        else:
            raise ValueError(f'Unknown feature loss type {feature_loss_type}.')

        # Codebook loss setup
        if self.vector_quantizer:
            self.commit_loss_scale = cfg.get("commit_loss_scale", 1.0)
        else:
            self.commit_loss_scale = 0.0

        if self.commit_loss_scale > 0 and not self.vector_quantizer_has_commit_loss:
            raise ValueError('Commit loss is enabled but the quantizer does not support it.')

        self.use_scl_loss = cfg.get("use_scl_loss", False)
        self.scl_loss_scale = cfg.get("scl_loss_scale", False)
        if self.use_scl_loss:
            self.speaker_encoder = ResNetSpeakerEncoder()
            # load pretrained model
            # self.speaker_encoder.load_checkpoint("https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar")
            self.speaker_encoder.load_checkpoint(
                "https://huggingface.co/Edresson/Speaker_Encoder_H_ASP/resolve/main/pytorch_model.bin", strict=False
            )
            # freeze the pretrained speaker encoder
            self.speaker_encoder.freeze()
            print("Speaker encoder loaded and frozen !!")

        # Disabled for now as it is not used in final model
        self.use_asr_consitency_loss = False
        self.acl_loss_scale = False
        # self.use_asr_consitency_loss = cfg.get("use_asr_consitency_loss", False)
        # self.acl_loss_scale = cfg.get("acl_loss_scale", False)
        # if self.use_asr_consitency_loss:
        #     self.phoneme_asr_model = PhonemeASR(input_sr=self.sample_rate)
        #     self.phoneme_asr_model.freeze()
        #     # self.acl_loss = CrossEntropyLoss()
        #     print("Phoneme ASR model loaded and frozen !!")

        # Log setup
        self.log_config = cfg.get("log_config", None)

        # Optimizer setup
        self.lr_schedule_interval = None
        self.automatic_optimization = False

    @property
    def dtype(self):
        return next(self.parameters()).dtype

    @property
    def num_codebooks(self):
        if self.vector_quantizer is None:
            raise ValueError("This AudioCodecModel does not have a vector quantizer.")

        return self.vector_quantizer.num_codebooks

    @property
    def codebook_size(self):
        if self.vector_quantizer is None:
            raise ValueError("This AudioCodecModel does not have a vector quantizer.")

        return self.vector_quantizer.codebook_size

    def state_dict(self, destination=None, prefix='', keep_vars=False):
        if hasattr(self, '_no_state_dict') and self._no_state_dict:
            return {}
        # Don't save the speaker verification and codec model in the state dict
        state_dict = super().state_dict(destination, prefix, keep_vars)
        for key in list(state_dict.keys()):
            if self.use_scl_loss and "speaker_encoder." in key:
                del state_dict[key]
            if "discriminator" in key and ".slm_model.ssl_model." in key:
                del state_dict[key]
        return state_dict

    def load_state_dict(self, state_dict, strict=True):
        # Override to load all the keys except .speaker_encoder. and WavLM model
        for key in list(state_dict.keys()):
            if self.use_scl_loss and "speaker_encoder." in key:
                del state_dict[key]
            if "discriminator" in key and ".slm_model.ssl_model." in key:
                del state_dict[key]

        super().load_state_dict(state_dict, strict=False)

    def get_speaker_embedding(self, audio, requires_grad=False):
        if not requires_grad:
            with torch.no_grad():
                if HAVE_TORCHAUDIO:
                    audio_resampled = torchaudio.functional.resample(
                        audio, self.sample_rate, self.speaker_encoder.audio_config["sample_rate"]
                    )
                else:
                    logging.error('Could not import torchaudio!')
                    raise ModuleNotFoundError("torchaudio is not installed but is necessary to audio resample !!")
                g = self.speaker_encoder(audio_resampled, l2_norm=True).unsqueeze(-1)
        else:
            if HAVE_TORCHAUDIO:
                audio_resampled = torchaudio.functional.resample(
                    audio, self.sample_rate, self.speaker_encoder.audio_config["sample_rate"]
                )
            else:
                logging.error('Could not import torchaudio!')
                raise ModuleNotFoundError("torchaudio is not installed but is necessary to audio resample !!")
            g = self.speaker_encoder(audio_resampled, l2_norm=True).unsqueeze(-1)

        return g

    @typecheck(
        input_types={
            "audio": NeuralType(('B', 'T_audio'), AudioSignal()),
            "audio_len": NeuralType(tuple('B'), LengthsType()),
        },
        output_types={
            "encoded": NeuralType(('B', 'D', 'T_encoded'), EncodedRepresentation()),
            "encoded_len": NeuralType(tuple('B'), LengthsType()),
        },
    )
    def encode_audio(self, audio: torch.Tensor, audio_len: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """Apply encoder on the input audio signal. Input will be padded with zeros so
        the last frame has full `self.samples_per_frame` samples.

        Args:
            audio: input time-domain signal
            audio_len: valid length for each example in the batch

        Returns:
            Encoder output `encoded` and its length in number of frames `encoded_len`
        """
        audio, audio_len = self.pad_audio(audio, audio_len)
        encoded, encoded_len = self.audio_encoder(audio=audio, audio_len=audio_len)
        return encoded, encoded_len

    @typecheck(
        input_types={
            "inputs": NeuralType(('B', 'D', 'T_encoded'), EncodedRepresentation()),
            "input_len": NeuralType(tuple('B'), LengthsType()),
        },
        output_types={
            "audio": NeuralType(('B', 'T_audio'), AudioSignal()),
            "audio_len": NeuralType(tuple('B'), LengthsType()),
        },
    )
    def decode_audio(self, inputs: torch.Tensor, input_len: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """Apply decoder on the input. Note that the input is a non-quantized encoder output or a dequantized representation.

        Args:
            inputs: encoded signal
            input_len: valid length for each example in the batch

        Returns:
            Decoded output `audio` in the time domain and its length in number of samples `audio_len`.
            Note that `audio_len` will be a multiple of `self.samples_per_frame`.
        """
        audio, audio_len = self.audio_decoder(inputs=inputs, input_len=input_len)
        return audio, audio_len

    @typecheck(
        input_types={
            "encoded": NeuralType(('B', 'D', 'T_encoded'), EncodedRepresentation()),
            "encoded_len": NeuralType(tuple('B'), LengthsType()),
        },
        output_types={"tokens": NeuralType(('B', 'C', 'T_encoded'), TokenIndex())},
    )
    def quantize(self, encoded: torch.Tensor, encoded_len: torch.Tensor) -> torch.Tensor:
        """Quantize the continuous encoded representation into a discrete
        representation for each frame.

        Args:
            encoded: encoded signal representation
            encoded_len: valid length of the encoded representation in frames

        Returns:
            A tensor of tokens for each codebook for each frame.
        """
        if not self.vector_quantizer:
            raise ValueError("Cannot quantize without quantizer")

        # vector quantizer is returning [C, B, T], where C is the number of codebooks
        with default_precision(torch.float32):
            # vector quantizer is returning [C, B, T], where C is the number of codebooks
            tokens = self.vector_quantizer.encode(inputs=encoded, input_len=encoded_len)
        # use batch first for the output
        tokens = rearrange(tokens, 'C B T -> B C T')
        return tokens

    @typecheck(
        input_types={
            "tokens": NeuralType(('B', 'C', 'T_encoded'), TokenIndex()),
            "tokens_len": NeuralType(tuple('B'), LengthsType()),
        },
        output_types={
            "dequantized": NeuralType(('B', 'D', 'T_encoded'), EncodedRepresentation()),
        },
    )
    def dequantize(self, tokens: torch.Tensor, tokens_len: torch.Tensor) -> torch.Tensor:
        """Convert the discrete tokens into a continuous encoded representation.

        Args:
            tokens: discrete tokens for each codebook for each time frame
            tokens_len: valid length of each example in the batch

        Returns:
            Continuous encoded representation of the discrete input representation.
        """
        if not self.vector_quantizer:
            raise ValueError("Cannot dequantize without quantizer")

        # vector quantizer is using [C, B, T], where C is the number of codebooks
        tokens = rearrange(tokens, 'B C T -> C B T')
        with default_precision(torch.float32):
            dequantized = self.vector_quantizer.decode(indices=tokens, input_len=tokens_len)
        dequantized = dequantized.to(self.dtype)  # make sure dequantized is in the right dtype
        return dequantized

    @typecheck(
        input_types={
            "audio": NeuralType(('B', 'T_audio'), AudioSignal()),
            "audio_len": NeuralType(tuple('B'), LengthsType()),
        },
        output_types={
            "tokens": NeuralType(('B', 'C', 'T_encoded'), TokenIndex()),
            "tokens_len": NeuralType(tuple('B'), LengthsType()),
        },
    )
    def encode(self, audio: torch.Tensor, audio_len: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """Convert input time-domain audio signal into a discrete representation (tokens).

        Args:
            audio: input time-domain signal, shape `(batch, number of samples)`
            audio_len: valid length for each example in the batch, shape `(batch size,)`

        Returns:
            Tokens for each codebook for each frame, shape `(batch, number of codebooks, number of frames)`,
            and the corresponding valid lengths, shape `(batch,)`
        """
        # Apply encoder to obtain a continuous vector for each frame
        encoded, encoded_len = self.encode_audio(audio=audio, audio_len=audio_len)
        # Apply quantizer to obtain discrete representation per frame
        tokens = self.quantize(encoded=encoded, encoded_len=encoded_len)
        return tokens, encoded_len

    @typecheck(
        input_types={
            "tokens": NeuralType(('B', 'C', 'T_encoded'), TokenIndex()),
            "tokens_len": NeuralType(tuple('B'), LengthsType()),
        },
        output_types={
            "audio": NeuralType(('B', 'T_audio'), AudioSignal()),
            "audio_len": NeuralType(tuple('B'), LengthsType()),
        },
    )
    def decode(self, tokens: torch.Tensor, tokens_len: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """Convert discrete tokens into a continuous time-domain signal.

        Args:
            tokens: discrete tokens for each codebook for each time frame, shape `(batch, number of codebooks, number of frames)`
            tokens_len: valid lengths, shape `(batch,)`

        Returns:
            Decoded output `audio` in the time domain and its length in number of samples `audio_len`.
            Note that `audio_len` will be a multiple of `self.samples_per_frame`.
        """
        # Convert a discrete representation to a dequantized vector for each frame
        dequantized = self.dequantize(tokens=tokens, tokens_len=tokens_len)
        dequantized = dequantized.to(self.dtype)  # make sure that the dequantized is in the model dtype
        # Apply decoder to obtain time-domain audio for each frame
        audio, audio_len = self.decode_audio(inputs=dequantized, input_len=tokens_len)

        return audio, audio_len

    @typecheck(
        input_types={
            "audio": NeuralType(('B', 'T_audio'), AudioSignal()),
            "audio_len": NeuralType(tuple('B'), LengthsType()),
        },
        output_types={
            "output_audio": NeuralType(('B', 'T_audio'), EncodedRepresentation()),
            "output_audio_len": NeuralType(tuple('B'), LengthsType()),
        },
    )
    def forward(self, audio: torch.Tensor, audio_len: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """Apply encoder, quantizer, decoder on the input time-domain signal.

        Args:
            audio: input time-domain signal
            audio_len: valid length for each example in the batch

        Returns:
            Reconstructed time-domain signal `output_audio` and its length in number of samples `output_audio_len`.
        """
        encoded, encoded_len = self.encode_audio(audio=audio, audio_len=audio_len)

        if self.vector_quantizer:
            # quantize to discrete tokens
            tokens = self.quantize(encoded=encoded, encoded_len=encoded_len)
            # decode tokens to audio
            output_audio, output_audio_len = self.decode(tokens=tokens, tokens_len=encoded_len)
        else:
            # no quantization, directly decode to audio
            output_audio, output_audio_len = self.decode_audio(inputs=encoded, input_len=encoded_len)

        return output_audio, output_audio_len

    def pad_audio(self, audio, audio_len):
        """Zero pad the end of the audio so that we do not have a partial end frame.
        The output will be zero-padded to have an integer number of frames of
        length `self.samples_per_frame`.

        Args:
            audio: input time-domain signal
            audio_len: valid length for each example in the batch

        Returns:
            Padded time-domain signal `padded_audio` and its length `padded_len`.
        """
        padded_len = self.samples_per_frame * torch.ceil(audio_len / self.samples_per_frame).int()
        max_len = padded_len.max().item()
        num_padding = max_len - audio.shape[1]
        padded_audio = F.pad(audio, (0, num_padding))
        return padded_audio, padded_len

    def _process_batch(self, batch):
        # [B, T_audio]
        audio = batch.get("audio")
        # [B]
        audio_len = batch.get("audio_lens")
        audio, audio_len = self.pad_audio(audio, audio_len)

        # [B, D, T_encoded]
        encoded, encoded_len = self.audio_encoder(audio=audio, audio_len=audio_len)

        if self.encoder_noise is not None:
            encoded = self.encoder_noise(encoded)

        if self.vector_quantizer:
            with default_precision(torch.float32):
                if self.vector_quantizer_has_commit_loss:
                    encoded, _, commit_loss = self.vector_quantizer(inputs=encoded, input_len=encoded_len)
                else:
                    encoded, _ = self.vector_quantizer(inputs=encoded, input_len=encoded_len)
                    commit_loss = 0.0

            encoded = encoded.to(encoded.dtype)  # make sure encoded is converted to the right dtype
        else:
            commit_loss = 0.0

        # [B, T]
        encoded = encoded.to(self.dtype)  # make sure vector quantizer output is in the model dtype
        audio_gen, _ = self.audio_decoder(inputs=encoded, input_len=encoded_len)

        return audio, audio_len, audio_gen, commit_loss, encoded

    @property
    def disc_update_prob(self) -> float:
        """Probability of updating the discriminator."""
        return self.disc_updates_per_period / self.disc_update_period

    def should_update_disc(self, batch_idx) -> bool:
        """Decide whether to update the descriminator based
        on the batch index and configured discriminator update period.
        """
        disc_update_step = batch_idx % self.disc_update_period
        return disc_update_step < self.disc_updates_per_period

    def training_step(self, batch, batch_idx):
        optim_gen, optim_disc = self.optimizers()

        audio, audio_len, audio_gen, commit_loss, codes = self._process_batch(batch)

        metrics = {
            "global_step": self.global_step,
            "lr": optim_gen.param_groups[0]['lr'],
        }

        if self.should_update_disc(batch_idx):
            # Train discriminator
            disc_scores_real, disc_scores_gen, _, _ = self.discriminator(
                audio_real=audio, audio_gen=audio_gen.detach()
            )
            loss_disc = self.disc_loss_fn(disc_scores_real=disc_scores_real, disc_scores_gen=disc_scores_gen)
            metrics["d_loss"] = loss_disc

            optim_disc.zero_grad()
            self.manual_backward(loss_disc)
            optim_disc.step()

        generator_losses = []

        # stft does not support bf16, so make it run in fp32
        loss_mel_l1, loss_mel_l2 = self.mel_loss_fn(
            audio_real=audio.float(), audio_gen=audio_gen.float(), audio_len=audio_len
        )

        if self.mel_loss_l1_scale:
            metrics["g_loss_mel_l1"] = loss_mel_l1
            generator_losses.append(self.mel_loss_l1_scale * loss_mel_l1)
        if self.mel_loss_l2_scale:
            metrics["g_loss_mel_l2"] = loss_mel_l2
            generator_losses.append(self.mel_loss_l2_scale * loss_mel_l2)

        if self.stft_loss_scale:
            loss_stft = self.stft_loss_fn(audio_real=audio.float(), audio_gen=audio_gen.float(), audio_len=audio_len)
            metrics["g_loss_stft"] = loss_stft
            generator_losses.append(self.stft_loss_scale * loss_stft)

        if self.time_domain_loss_scale:
            loss_time_domain = self.time_domain_loss_fn(audio_real=audio, audio_gen=audio_gen, audio_len=audio_len)
            metrics["g_loss_time_domain"] = loss_time_domain
            generator_losses.append(self.time_domain_loss_scale * loss_time_domain)

        if self.si_sdr_loss_scale:
            loss_si_sdr = self.si_sdr_loss_fn(audio_real=audio, audio_gen=audio_gen, audio_len=audio_len)
            metrics["g_loss_si_sdr"] = loss_si_sdr
            generator_losses.append(self.si_sdr_loss_scale * loss_si_sdr)

        _, disc_scores_gen, fmaps_real, fmaps_gen = self.discriminator(audio_real=audio, audio_gen=audio_gen)

        if self.gen_loss_scale:
            loss_gen = self.gen_loss_fn(disc_scores_gen=disc_scores_gen)
            metrics["g_loss_gen"] = loss_gen
            generator_losses.append(self.gen_loss_scale * loss_gen)

        if self.feature_loss_scale:
            loss_feature = self.feature_loss_fn(fmaps_real=fmaps_real, fmaps_gen=fmaps_gen)
            metrics["g_loss_feature"] = loss_feature
            generator_losses.append(self.feature_loss_scale * loss_feature)

        if self.commit_loss_scale:
            metrics["g_loss_commit"] = commit_loss
            generator_losses.append(self.commit_loss_scale * commit_loss)

        if self.mmd_loss_scale:
            loss_mmd = self.mmd_loss_fn(inputs=codes)
            metrics["g_loss_mmd"] = loss_mmd

            if self.current_epoch >= self.mmd_loss_start_epoch:
                generator_losses.append(self.mmd_loss_scale * loss_mmd)

        if self.mmd_time_loss_scale:
            loss_mmd_time = self.mmd_time_loss_fn(inputs=codes)
            metrics["g_loss_mmd_time"] = loss_mmd_time
            if self.current_epoch >= self.mmd_loss_start_epoch:
                generator_losses.append(self.mmd_time_loss_scale * loss_mmd_time)

        # compute embeddings for speaker consistency loss
        if self.use_scl_loss:
            # concate generated and GT waveforms
            audios_batch = torch.cat((audio.squeeze(1), audio_gen.squeeze(1)), dim=0)

            # get speaker embeddings with grads
            pred_embs = self.get_speaker_embedding(audios_batch, requires_grad=True)

            # split generated and GT speaker embeddings
            gt_spk_emb, syn_spk_emb = torch.chunk(pred_embs, 2, dim=0)

            # speaker consistency loss like YourTTS paper
            loss_scl = -1 * torch.nn.functional.cosine_similarity(gt_spk_emb, syn_spk_emb).mean() * self.scl_loss_scale

            metrics["g_loss_scl"] = loss_scl
            generator_losses.append(metrics["g_loss_scl"])

        if self.use_asr_consitency_loss:
            # concate generated and GT waveforms
            audios_batch = torch.cat((audio.squeeze(1), audio_gen.squeeze(1)), dim=0)

            logits, _ = self.phoneme_asr_model(audios_batch)

            logits_gt, logits_pred = torch.chunk(logits, 2, dim=0)
            # labels_gt, labels_pred = torch.chunk(labels, 2, dim=0)

            loss_acl = torch.nn.functional.mse_loss(logits_pred, logits_gt) * self.acl_loss_scale
            metrics["g_loss_acl"] = loss_acl
            generator_losses.append(metrics["g_loss_acl"])

        loss_gen_all = sum(generator_losses)

        optim_gen.zero_grad()
        self.manual_backward(loss_gen_all)
        optim_gen.step()

        self.update_lr()

        self.log_dict(metrics, on_step=True, sync_dist=True)
        self.log("t_loss", loss_mel_l1, prog_bar=True, logger=False, sync_dist=True)

    def on_train_epoch_end(self):
        self.update_lr("epoch")

    def validation_step(self, batch, batch_idx):
        audio, audio_len, audio_gen, _, _ = self._process_batch(batch)

        loss_mel_l1, loss_mel_l2 = self.mel_loss_fn(
            audio_real=audio.float(), audio_gen=audio_gen.float(), audio_len=audio_len
        )
        loss_stft = self.stft_loss_fn(audio_real=audio.float(), audio_gen=audio_gen.float(), audio_len=audio_len)
        loss_time_domain = self.time_domain_loss_fn(audio_real=audio, audio_gen=audio_gen, audio_len=audio_len)
        loss_si_sdr = self.si_sdr_loss_fn(audio_real=audio, audio_gen=audio_gen, audio_len=audio_len)

        # Use only main reconstruction losses for val_loss
        val_loss = loss_mel_l1 + loss_stft + loss_time_domain

        metrics = {
            "val_loss": val_loss,
            "val_loss_mel_l1": loss_mel_l1,
            "val_loss_mel_l2": loss_mel_l2,
            "val_loss_stft": loss_stft,
            "val_loss_time_domain": loss_time_domain,
            "val_loss_si_sdr": loss_si_sdr,
        }
        # compute embeddings for speaker consistency loss
        if self.use_scl_loss:
            # concate generated and GT waveforms
            audios_batch = torch.cat((audio.squeeze(1), audio_gen.squeeze(1)), dim=0)

            # get speaker embeddings with grads
            pred_embs = self.get_speaker_embedding(audios_batch, requires_grad=True)

            # split generated and GT speaker embeddings
            gt_spk_emb, syn_spk_emb = torch.chunk(pred_embs, 2, dim=0)

            # speaker consistency loss like YourTTS paper
            loss_scl = -1 * torch.nn.functional.cosine_similarity(gt_spk_emb, syn_spk_emb).mean() * self.scl_loss_scale

            metrics["val_loss_scl"] = loss_scl
            metrics["val_loss"] += metrics["val_loss_scl"]

        if self.use_asr_consitency_loss:
            # concate generated and GT waveforms
            audios_batch = torch.cat((audio.squeeze(1), audio_gen.squeeze(1)), dim=0)

            logits, _ = self.phoneme_asr_model(audios_batch)
            logits_gt, logits_pred = torch.chunk(logits, 2, dim=0)

            loss_acl = torch.nn.functional.mse_loss(logits_pred, logits_gt) * self.acl_loss_scale
            metrics["val_loss_acl"] = loss_acl
            metrics["val_loss"] += metrics["val_loss_acl"]

        self.log_dict(metrics, on_epoch=True, sync_dist=True)

    def get_dataset(self, cfg):
        with open_dict(cfg):
            is_sharded = cfg.dataset.pop('is_sharded', False)

        if is_sharded:
            with open_dict(cfg):
                cfg.dataset.global_rank = self.global_rank
                cfg.dataset.world_size = self.world_size
                cfg.dataset._target_ = 'nemo.collections.tts.data.vocoder_dataset.TarredVocoderDataset'

        dataset = instantiate(cfg.dataset)

        sampler = dataset.get_sampler(cfg.dataloader_params.batch_size, world_size=self.trainer.world_size)
        return dataset, sampler

    def _setup_train_dataloader(self, cfg):
        dataset, sampler = self.get_dataset(cfg)
        data_loader = torch.utils.data.DataLoader(
            dataset, collate_fn=dataset.collate_fn, sampler=sampler, **cfg.dataloader_params
        )
        return data_loader

    def _setup_test_dataloader(self, cfg):
        dataset = instantiate(cfg.dataset)
        data_loader = torch.utils.data.DataLoader(dataset, collate_fn=dataset.collate_fn, **cfg.dataloader_params)
        return data_loader

    def setup_training_data(self, cfg):
        self._train_dl = self._setup_train_dataloader(cfg)
        batch_size = cfg['dataloader_params']['batch_size']
        # Need to set this because if using an IterableDataset, the length of the dataloader is the total number
        # of samples rather than the number of batches, and this messes up the tqdm progress bar.
        # So we set the number of steps manually (to the correct number) to fix this.
        if (
            self._train_dl is not None
            and hasattr(self._train_dl, 'dataset')
            and isinstance(self._train_dl.dataset, torch.utils.data.IterableDataset)
        ):
            # We also need to check if limit_train_batches is already set.
            # If it's an int, we assume that the user has set it to something sane, i.e. <= # training batches,
            # and don't change it. Otherwise, adjust batches accordingly if it's a float (including 1.0).
            if self._trainer is not None and isinstance(self._trainer.limit_train_batches, float):
                self._trainer.limit_train_batches = int(
                    self._trainer.limit_train_batches
                    * ceil((len(self._train_dl.dataset) / self.world_size) / batch_size)
                )
            elif self._trainer is None:
                logging.warning(
                    "Model Trainer was not set before constructing the dataset, incorrect number of "
                    "training batches will be used. Please set the trainer and rebuild the dataset."
                )

    def setup_validation_data(self, cfg):
        self._validation_dl = self._setup_test_dataloader(cfg)

    def setup_test_data(self, cfg):
        pass

    @property
    def max_steps(self):
        if "max_steps" in self._cfg:
            return self._cfg.get("max_steps")

        if "max_epochs" not in self._cfg:
            raise ValueError("Must specify 'max_steps' or 'max_epochs'.")

        if "steps_per_epoch" in self._cfg:
            return self._cfg.max_epochs * self._cfg.steps_per_epoch
        return compute_max_steps(
            max_epochs=self._cfg.max_epochs,
            accumulate_grad_batches=self.trainer.accumulate_grad_batches,
            limit_train_batches=self.trainer.limit_train_batches,
            num_workers=get_num_workers(self.trainer),
            num_samples=len(self._train_dl.dataset),
            batch_size=get_batch_size(self._train_dl),
            drop_last=self._train_dl.drop_last,
        )

    def configure_optimizers(self):
        optim_config = self._cfg.optim.copy()

        OmegaConf.set_struct(optim_config, False)
        sched_config = optim_config.pop("sched", None)
        OmegaConf.set_struct(optim_config, True)

        asr_ph_params = self.phoneme_asr_model.parameters() if self.use_asr_consitency_loss else []
        se_params = self.speaker_encoder.parameters() if self.use_scl_loss else []
        vq_params = self.vector_quantizer.parameters() if self.vector_quantizer else []
        gen_params = itertools.chain(
            self.audio_encoder.parameters(), self.audio_decoder.parameters(), vq_params, asr_ph_params, se_params
        )
        optim_g = instantiate(optim_config, params=gen_params)

        disc_params = self.discriminator.parameters()
        optim_d = instantiate(optim_config, params=disc_params)

        if sched_config is None:
            logging.debug('Scheduler is not used')
            return [optim_g, optim_d]

        logging.debug('Setting up schedulers')
        OmegaConf.set_struct(sched_config, False)
        sched_config["max_steps"] = self.max_steps
        OmegaConf.set_struct(sched_config, True)

        scheduler_g = prepare_lr_scheduler(
            optimizer=optim_g, scheduler_config=sched_config, train_dataloader=self._train_dl
        )

        scheduler_d = prepare_lr_scheduler(
            optimizer=optim_d, scheduler_config=sched_config, train_dataloader=self._train_dl
        )

        self.lr_schedule_interval = scheduler_g["interval"]

        return [optim_g, optim_d], [scheduler_g, scheduler_d]

    def update_lr(self, interval="step"):
        schedulers = self.lr_schedulers()
        if schedulers is not None and self.lr_schedule_interval == interval:
            sch1, sch2 = schedulers
            sch1.step()
            sch2.step()

    def configure_callbacks(self):
        if not self.log_config:
            return []

        data_loader = self._setup_test_dataloader(self.log_config)
        generators = instantiate(self.log_config.generators)
        log_dir = Path(self.log_config.log_dir) if self.log_config.log_dir else None
        log_callback = LoggingCallback(
            generators=generators,
            data_loader=data_loader,
            log_epochs=self.log_config.log_epochs,
            epoch_frequency=self.log_config.epoch_frequency,
            output_dir=log_dir,
            loggers=self.trainer.loggers,
            log_tensorboard=self.log_config.log_tensorboard,
            log_wandb=self.log_config.log_wandb,
        )

        return [log_callback]

    @classmethod
    def list_available_models(cls) -> List[PretrainedModelInfo]:
        models = []

        model = PretrainedModelInfo(
            pretrained_model_name="audio_codec_16khz_small",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/audio_codec_16khz_small/versions/v1/files/audio_codec_16khz_small.nemo",
            description="For details about this model please refer to the model card: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/audio_codec_16khz_small",
        )
        models.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="mel_codec_22khz_medium",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/mel_codec_22khz_medium/versions/v1/files/mel_codec_22khz_medium.nemo",
            description="For details about this model please refer to the model card: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/mel_codec_22khz_medium",
        )
        models.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="mel_codec_44khz_medium",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/mel_codec_44khz_medium/versions/v1/files/mel_codec_44khz_medium.nemo",
            description="For details about this model please refer to the model card: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/mel_codec_44khz_medium",
        )
        models.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="mel_codec_22khz_fullband_medium",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/mel_codec_22khz_fullband_medium/versions/v1/files/mel_codec_22khz_fullband_medium.nemo",
            description="For details about this model please refer to the model card: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/mel_codec_22khz_fullband_medium",
        )
        models.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="mel_codec_44khz_fullband_medium",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/mel_codec_44khz_fullband_medium/versions/v1/files/mel_codec_44khz_fullband_medium.nemo",
            description="For details about this model please refer to the model card: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/mel_codec_44khz_fullband_medium",
        )
        models.append(model)

        return models