File size: 16,718 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
from typing import Iterable

import torch
from hydra.utils import instantiate
from lightning.pytorch import Trainer
from lightning.pytorch.loggers import TensorBoardLogger
from omegaconf import DictConfig

from nemo.collections.tts.losses.fastpitchloss import DurationLoss, MelLoss, PitchLoss
from nemo.collections.tts.modules.fastpitch import FastPitchSSLModule, average_features
from nemo.collections.tts.modules.transformer import mask_from_lens
from nemo.collections.tts.parts.utils.helpers import plot_multipitch_to_numpy, plot_spectrogram_to_numpy
from nemo.core.classes import ModelPT
from nemo.core.classes.common import PretrainedModelInfo
from nemo.utils import logging, model_utils
from nemo.utils.decorators import experimental


@experimental
class FastPitchModel_SSL(ModelPT):
    """
    FastPitch based model that can synthesize mel spectrograms from content and speaker embeddings
    obtained from SSLDisentangler. This model can be used for voice conversion by swapping the speaker embedding
    of a given source utterance, with the speaker embedding of a target speaker.
    """

    def __init__(self, cfg: DictConfig, trainer: Trainer = None, vocoder=None):
        # Convert to Hydra 1.0 compatible DictConfig
        cfg = model_utils.convert_model_config_to_dict_config(cfg)
        cfg = model_utils.maybe_update_config_version(cfg)

        self.learn_alignment = False

        self._parser = None
        self._tb_logger = None
        super().__init__(cfg=cfg, trainer=trainer)

        self.bin_loss_warmup_epochs = cfg.get("bin_loss_warmup_epochs", 100)
        self.log_train_images = False

        # Same defaults as FastPitch
        loss_scale = 0.1 if self.learn_alignment else 1.0
        dur_loss_scale = loss_scale
        pitch_loss_scale = loss_scale
        if "dur_loss_scale" in cfg:
            dur_loss_scale = cfg.dur_loss_scale
        if "pitch_loss_scale" in cfg:
            pitch_loss_scale = cfg.pitch_loss_scale

        self.mel_loss = MelLoss()
        self.pitch_loss = PitchLoss(loss_scale=pitch_loss_scale)
        self.duration_loss = DurationLoss(loss_scale=dur_loss_scale)

        input_fft = None
        self.use_encoder = use_encoder = cfg.get("use_encoder", False)
        if use_encoder:
            self.encoder = instantiate(self._cfg.encoder)

        output_fft = instantiate(self._cfg.output_fft)

        duration_predictor = None
        self.use_duration_predictor = cfg.get("use_duration_predictor", False)
        if self.use_duration_predictor:
            assert self.encoder is not None, "use_encoder must be True if use_duration_predictor is True"
            # this means we are using unique tokens
            duration_predictor = instantiate(self._cfg.duration_predictor)

        self.pitch_conditioning = pitch_conditioning = cfg.get("pitch_conditioning", True)
        if pitch_conditioning:
            pitch_predictor = instantiate(self._cfg.pitch_predictor)
        else:
            pitch_predictor = None

        self.content_projection_layer = torch.nn.Linear(self._cfg.content_emb_indim, self._cfg.content_emb_outdim)
        self.speaker_projection_layer = torch.nn.Linear(self._cfg.speaker_emb_indim, self._cfg.speaker_emb_outdim)

        self.num_datasets = cfg.get("n_datasets", 1)
        if self.num_datasets > 1:
            # Data ID conditioning if num_datasets > 1. During inference, can set data_id to be that of the cleaner dataset.
            # Maybe useful if we have clean and noisy datasets
            self.dataset_embedding_layer = torch.nn.Embedding(self.num_datasets, self._cfg.symbols_embedding_dim)

        self.fastpitch = FastPitchSSLModule(
            input_fft,
            output_fft,
            duration_predictor,
            pitch_predictor,
            cfg.symbols_embedding_dim,
            cfg.pitch_embedding_kernel_size,
            cfg.n_mel_channels,
        )

        self.non_trainable_models = {}
        self.non_trainable_models['vocoder'] = vocoder

    def vocode_spectrogram(self, spectrogram):
        # spectrogram [C, T] numpy
        if self.non_trainable_models['vocoder'] is None:
            logging.error("Vocoder is none, should be instantiated as a HiFiGAN vocoder")

        with torch.no_grad():
            vocoder_device = self.non_trainable_models['vocoder'].device
            _spec = torch.from_numpy(spectrogram).unsqueeze(0).to(torch.float32).to(vocoder_device)
            wav_generated = self.non_trainable_models['vocoder'].generator(x=_spec)[0]
            return wav_generated.cpu().numpy()

    @property
    def tb_logger(self):
        if self._tb_logger is None:
            if self.logger is None and self.logger.experiment is None:
                return None
            tb_logger = self.logger.experiment
            if isinstance(self.logger, Iterable):
                for logger in self.logger:
                    if isinstance(logger, Iterable):
                        tb_logger = logger.experiment
                        break
            self._tb_logger = tb_logger
        return self._tb_logger

    def forward(
        self,
        *,
        enc_out=None,
        enc_mask=None,
        durs=None,
        pitch=None,
        pace=1.0,
    ):
        return self.fastpitch(
            enc_out=enc_out,
            enc_mask=enc_mask,
            durs=durs,
            pitch=pitch,
            pace=pace,
        )

    def compute_encoding(self, content_embedding, speaker_embedding, dataset_id=None):
        # content embedding is (B, C, T)
        # speaker embedding is (B, C)
        # pitch_contour is (B, T)
        content_embedding = content_embedding.permute(0, 2, 1)  # (B, C, T) -> (B, T, C)
        content_embedding_projected = self.content_projection_layer(content_embedding)
        content_embedding_projected = content_embedding_projected.permute(0, 2, 1)  # (B, T, C) -> (B, C, T)
        speaker_embedding_projected = self.speaker_projection_layer(speaker_embedding)
        speaker_embedding_repeated = speaker_embedding_projected[:, :, None].repeat(
            1, 1, content_embedding_projected.shape[2]
        )

        encoded = torch.cat([content_embedding_projected, speaker_embedding_repeated], dim=1)

        encoded = encoded.permute(0, 2, 1)  # (B, C, T) -> (B, T, C)

        if self.num_datasets > 1:
            dataset_embedding = self.dataset_embedding_layer(dataset_id)  # (B, C)
            dataset_embedding_repeated = dataset_embedding[:, None, :].repeat(1, encoded.shape[1], 1)
            encoded = encoded + dataset_embedding_repeated

        return encoded

    def training_step(self, batch, batch_idx):
        content_embedding = batch["content_embedding"]
        encoded_len = batch["encoded_len"]
        speaker_embedding = batch["speaker_embedding"]
        mels = batch["mel_spectrogram"]
        pitch = batch["pitch_contour"]
        dataset_id = batch["dataset_id"]
        durs = batch["duration"]

        enc_out = self.compute_encoding(content_embedding, speaker_embedding, dataset_id)
        if self.use_encoder:
            enc_out, _ = self.encoder(input=enc_out, seq_lens=encoded_len)

        enc_mask = mask_from_lens(encoded_len)
        enc_mask = enc_mask[:, :, None]

        mels_pred, _, _, log_durs_pred, pitch_pred, pitch = self(
            enc_out=enc_out,
            enc_mask=enc_mask,
            durs=durs,
            pitch=pitch,
            pace=1.0,
        )

        loss = 0
        mel_loss = self.mel_loss(spect_predicted=mels_pred, spect_tgt=mels)
        loss += mel_loss
        if self.use_duration_predictor:
            dur_loss = self.duration_loss(log_durs_predicted=log_durs_pred, durs_tgt=durs, len=encoded_len)
            self.log("t_dur_loss", dur_loss)
            loss += dur_loss

        if self.pitch_conditioning:
            pitch_loss = self.pitch_loss(pitch_predicted=pitch_pred, pitch_tgt=pitch, len=encoded_len)
            loss += pitch_loss
            self.log("t_pitch_loss", pitch_loss)

        self.log("t_loss", loss)
        self.log("t_mel_loss", mel_loss)

        # Log images to tensorboard
        if self.log_train_images and isinstance(self.logger, TensorBoardLogger):
            self.log_train_images = False

            self.tb_logger.add_image(
                "train_mel_target",
                plot_spectrogram_to_numpy(mels[0].data.cpu().float().numpy()),
                self.global_step,
                dataformats="HWC",
            )
            spec_predict = mels_pred[0].data.cpu().float().numpy()
            self.tb_logger.add_image(
                "train_mel_predicted",
                plot_spectrogram_to_numpy(spec_predict),
                self.global_step,
                dataformats="HWC",
            )

        return loss

    def validation_step(self, batch, batch_idx):
        content_embedding = batch["content_embedding"]
        encoded_len = batch["encoded_len"]
        speaker_embedding = batch["speaker_embedding"]
        mels = batch["mel_spectrogram"]
        spec_len = batch["mel_len"]
        pitch = batch["pitch_contour"]
        dataset_id = batch["dataset_id"]
        durs = batch["duration"]

        enc_out = self.compute_encoding(content_embedding, speaker_embedding, dataset_id)
        if self.use_encoder:
            enc_out, _ = self.encoder(input=enc_out, seq_lens=encoded_len)

        enc_mask = mask_from_lens(encoded_len)
        enc_mask = enc_mask[:, :, None]

        mels_pred, _, _, log_durs_pred, pitch_pred, pitch = self(
            enc_out=enc_out, enc_mask=enc_mask, durs=durs, pitch=pitch, pace=1.0
        )

        mel_loss = self.mel_loss(spect_predicted=mels_pred, spect_tgt=mels)

        val_out = {
            "val_loss": mel_loss,
            "mel_loss": mel_loss,
            "mel_target": mels if batch_idx == 0 else None,
            "mel_pred": mels_pred if batch_idx == 0 else None,
            "spec_len": spec_len if batch_idx == 0 else None,
            "pitch_target": pitch if batch_idx == 0 else None,
            "pitch_pred": pitch_pred if batch_idx == 0 else None,
        }

        if self.use_duration_predictor:
            dur_loss = self.duration_loss(log_durs_predicted=log_durs_pred, durs_tgt=durs, len=encoded_len)
            val_out["dur_loss"] = dur_loss

        if self.pitch_conditioning:
            pitch_loss = self.pitch_loss(pitch_predicted=pitch_pred, pitch_tgt=pitch, len=encoded_len)
            val_out["pitch_loss"] = pitch_loss
            val_out["val_loss"] = mel_loss + pitch_loss

        return val_out

    def on_validation_epoch_end(self, outputs):
        collect = lambda key: torch.stack([x[key] for x in outputs]).mean()
        val_loss = collect("val_loss")
        mel_loss = collect("mel_loss")

        self.log("v_loss", val_loss)
        self.log("v_mel_loss", mel_loss)

        if self.pitch_conditioning:
            pitch_loss = collect("pitch_loss")
            self.log("v_pitch_loss", pitch_loss)

        single_output = outputs[0]
        spec_target = single_output['mel_target']
        spec_predict = single_output['mel_pred']
        spec_len = single_output['spec_len']
        pitch_target = single_output['pitch_target']
        pitch_pred = single_output['pitch_pred']

        if isinstance(self.logger, TensorBoardLogger):
            _rand_idx = random.randint(0, spec_target.shape[0] - 1)
            self.tb_logger.add_image(
                "val_mel_target",
                plot_spectrogram_to_numpy(spec_target[_rand_idx].data.cpu().float().numpy()),
                self.global_step,
                dataformats="HWC",
            )
            spec_predict = spec_predict[_rand_idx].data.cpu().float().numpy()
            self.tb_logger.add_image(
                "val_mel_predicted",
                plot_spectrogram_to_numpy(spec_predict),
                self.global_step,
                dataformats="HWC",
            )

            if self.pitch_conditioning:
                _pitch_pred = pitch_pred[_rand_idx].data.cpu().numpy()
                _pitch_target = pitch_target[_rand_idx].data.cpu().numpy()

                self.tb_logger.add_image(
                    "val_pitch",
                    plot_multipitch_to_numpy(_pitch_target, _pitch_pred),
                    self.global_step,
                    dataformats="HWC",
                )

            _spec_len = spec_len[_rand_idx].data.cpu().item()
            wav_vocoded = self.vocode_spectrogram(spec_target[_rand_idx].data.cpu().float().numpy()[:, :_spec_len])
            self.tb_logger.add_audio("Real audio", wav_vocoded[0], self.global_step, 22050)

            wav_vocoded = self.vocode_spectrogram(spec_predict[:, :_spec_len])
            self.tb_logger.add_audio("Generated Audio", wav_vocoded[0], self.global_step, 22050)
            self.log_train_images = True

    def generate_wav(
        self,
        content_embedding,
        speaker_embedding,
        encoded_len=None,
        pitch_contour=None,
        compute_pitch=False,
        compute_duration=False,
        durs_gt=None,
        dataset_id=0,
    ):
        """
        Args:
            content_embedding : Content embedding from SSL backbone (B, C, T)
            speaker_embedding : Speaker embedding from SSL backbone (B, C)
            pitch_contour : Normalized Pitch contour derived from the mel spectrogram
            encoded_len: Length of each content embedding, optional if batch size is 1.
            compute_pitch: if true, predict pitch contour from content and speaker embedding.
            compute_duration: if true, predict duration from content and speaker embedding.
            durs_gt: Ground truth duration of each content embedding, ignored if compute_duration is True.
            dataset_id: Dataset id if training is conditioned on multiple datasets
        Returns:
            List of waveforms
        """
        _bs, _, _n_time = content_embedding.size()
        if encoded_len is None:
            encoded_len = (torch.ones(_bs) * _n_time).long().to(self.device)

        dataset_id = (torch.ones(_bs) * dataset_id).long().to(self.device)
        enc_out = self.compute_encoding(content_embedding, speaker_embedding, dataset_id=dataset_id)
        if self.use_encoder:
            enc_out, _ = self.encoder(input=enc_out, seq_lens=encoded_len)

        enc_mask = mask_from_lens(encoded_len)

        if compute_duration:
            durs = None
        elif durs_gt is not None:
            durs = durs_gt
        else:
            ssl_downsampling_factor = self._cfg.get("ssl_downsampling_factor", 4)  # backward compatibility
            durs = torch.ones_like(enc_mask) * ssl_downsampling_factor

        enc_mask = enc_mask[:, :, None]
        if pitch_contour is not None and compute_pitch == False:
            if durs_gt is not None:
                pitch = average_features(pitch_contour.unsqueeze(1), durs_gt).squeeze(1)
            elif durs is not None:
                pitch = average_features(pitch_contour.unsqueeze(1), durs).squeeze(1)
            else:
                raise ValueError("durs or durs_gt must be provided")

        else:
            pitch = None

        mels_pred, *_ = self(enc_out=enc_out, enc_mask=enc_mask, durs=durs, pitch=pitch, pace=1.0)

        wavs = []
        for idx in range(_bs):
            mel_pred = mels_pred[idx].data.cpu().float().numpy()
            wav = self.vocode_spectrogram(mel_pred)
            wavs.append(wav)

        return wavs

    def __setup_dataloader_from_config(self, cfg):
        dataset = instantiate(cfg.dataset)

        return torch.utils.data.DataLoader(dataset, collate_fn=dataset.pad_collate_fn, **cfg.dataloader_params)

    def setup_training_data(self, cfg):
        self._train_dl = self.__setup_dataloader_from_config(cfg)

    def setup_validation_data(self, cfg):
        self._validation_dl = self.__setup_dataloader_from_config(cfg)

    def setup_test_data(self, cfg):
        """Omitted."""
        pass

    @classmethod
    def list_available_models(cls) -> 'List[PretrainedModelInfo]':
        return []