Spaces:
Runtime error
Runtime error
File size: 25,933 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
from pathlib import Path
import torch
import torch.nn.functional as F
from hydra.utils import instantiate
from lightning.pytorch.loggers.wandb import WandbLogger
from omegaconf import DictConfig, OmegaConf, open_dict
from nemo.collections.tts.losses.hifigan_losses import DiscriminatorLoss, FeatureMatchingLoss, GeneratorLoss
from nemo.collections.tts.models.base import Vocoder
from nemo.collections.tts.modules.hifigan_modules import MultiPeriodDiscriminator, MultiScaleDiscriminator
from nemo.collections.tts.parts.utils.callbacks import LoggingCallback
from nemo.collections.tts.parts.utils.helpers import get_batch_size, get_num_workers, plot_spectrogram_to_numpy
from nemo.core.classes import Exportable
from nemo.core.classes.common import PretrainedModelInfo, typecheck
from nemo.core.neural_types.elements import AudioSignal, MelSpectrogramType
from nemo.core.neural_types.neural_type import NeuralType
from nemo.core.optim.lr_scheduler import compute_max_steps, prepare_lr_scheduler
from nemo.utils import logging, model_utils
HAVE_WANDB = True
try:
import wandb
except ModuleNotFoundError:
HAVE_WANDB = False
class HifiGanModel(Vocoder, Exportable):
"""
HiFi-GAN model (https://arxiv.org/abs/2010.05646) that is used to generate audio from mel spectrogram.
"""
def __init__(self, cfg: DictConfig, trainer: 'Trainer' = None):
# Convert to Hydra 1.0 compatible DictConfig
cfg = model_utils.convert_model_config_to_dict_config(cfg)
cfg = model_utils.maybe_update_config_version(cfg)
self.ds_class = cfg.train_ds.dataset._target_
super().__init__(cfg=cfg, trainer=trainer)
self.audio_to_melspec_precessor = instantiate(cfg.preprocessor)
# We use separate preprocessor for training, because we need to pass grads and remove pitch fmax limitation
self.trg_melspec_fn = instantiate(cfg.preprocessor, highfreq=None, use_grads=True)
self.generator = instantiate(cfg.generator)
self.mpd = MultiPeriodDiscriminator(debug=cfg.debug if "debug" in cfg else False)
self.msd = MultiScaleDiscriminator(debug=cfg.debug if "debug" in cfg else False)
self.feature_loss = FeatureMatchingLoss()
self.discriminator_loss = DiscriminatorLoss()
self.generator_loss = GeneratorLoss()
self.l1_factor = cfg.get("l1_loss_factor", 45)
self.sample_rate = self._cfg.preprocessor.sample_rate
self.stft_bias = None
self.input_as_mel = False
if self._train_dl:
self.input_as_mel = self._train_dl.dataset.load_precomputed_mel
self.log_audio = cfg.get("log_audio", False)
self.log_config = cfg.get("log_config", None)
self.lr_schedule_interval = None
# Important: this property activates manual optimization.
self.automatic_optimization = False
@property
def max_steps(self):
if "max_steps" in self._cfg:
return self._cfg.get("max_steps")
if "max_epochs" not in self._cfg:
raise ValueError("Must specify 'max_steps' or 'max_epochs'.")
if "steps_per_epoch" in self._cfg:
return self._cfg.max_epochs * self._cfg.steps_per_epoch
return compute_max_steps(
max_epochs=self._cfg.max_epochs,
accumulate_grad_batches=self.trainer.accumulate_grad_batches,
limit_train_batches=self.trainer.limit_train_batches,
num_workers=get_num_workers(self.trainer),
num_samples=len(self._train_dl.dataset),
batch_size=get_batch_size(self._train_dl),
drop_last=self._train_dl.drop_last,
)
@staticmethod
def get_warmup_steps(max_steps, warmup_steps, warmup_ratio):
if warmup_steps is not None:
return warmup_steps
if warmup_ratio is not None:
return warmup_ratio * max_steps
return None
def configure_optimizers(self):
optim_config = self._cfg.optim.copy()
OmegaConf.set_struct(optim_config, False)
sched_config = optim_config.pop("sched", None)
OmegaConf.set_struct(optim_config, True)
gen_params = self.generator.parameters()
disc_params = itertools.chain(self.msd.parameters(), self.mpd.parameters())
optim_g = instantiate(optim_config, params=gen_params)
optim_d = instantiate(optim_config, params=disc_params)
if sched_config is None:
return [optim_g, optim_d]
max_steps = self.max_steps
warmup_steps = self.get_warmup_steps(
max_steps=max_steps,
warmup_steps=sched_config.get("warmup_steps", None),
warmup_ratio=sched_config.get("warmup_ratio", None),
)
OmegaConf.set_struct(sched_config, False)
sched_config["max_steps"] = max_steps
if warmup_steps:
sched_config["warmup_steps"] = warmup_steps
sched_config.pop("warmup_ratio", None)
OmegaConf.set_struct(sched_config, True)
scheduler_g = prepare_lr_scheduler(
optimizer=optim_g, scheduler_config=sched_config, train_dataloader=self._train_dl
)
scheduler_d = prepare_lr_scheduler(
optimizer=optim_d, scheduler_config=sched_config, train_dataloader=self._train_dl
)
self.lr_schedule_interval = scheduler_g["interval"]
return [optim_g, optim_d], [scheduler_g, scheduler_d]
def update_lr(self, interval="step"):
schedulers = self.lr_schedulers()
if schedulers is not None and self.lr_schedule_interval == interval:
sch1, sch2 = schedulers
sch1.step()
sch2.step()
@typecheck()
def forward(self, *, spec):
"""
Runs the generator, for inputs and outputs see input_types, and output_types
"""
return self.generator(x=spec)
@typecheck(
input_types={"spec": NeuralType(('B', 'C', 'T'), MelSpectrogramType())},
output_types={"audio": NeuralType(('B', 'T'), AudioSignal())},
)
def convert_spectrogram_to_audio(self, spec: 'torch.tensor') -> 'torch.tensor':
return self(spec=spec).squeeze(1)
def training_step(self, batch, batch_idx):
audio, audio_len, audio_mel, _ = self._process_batch(batch)
# Mel as input for L1 mel loss
audio_trg_mel, _ = self.trg_melspec_fn(audio, audio_len)
audio = audio.unsqueeze(1)
audio_pred = self.generator(x=audio_mel)
audio_pred_mel, _ = self.trg_melspec_fn(audio_pred.squeeze(1), audio_len)
optim_g, optim_d = self.optimizers()
# Train discriminator
optim_d.zero_grad()
mpd_score_real, mpd_score_gen, _, _ = self.mpd(y=audio, y_hat=audio_pred.detach())
loss_disc_mpd, _, _ = self.discriminator_loss(
disc_real_outputs=mpd_score_real, disc_generated_outputs=mpd_score_gen
)
msd_score_real, msd_score_gen, _, _ = self.msd(y=audio, y_hat=audio_pred.detach())
loss_disc_msd, _, _ = self.discriminator_loss(
disc_real_outputs=msd_score_real, disc_generated_outputs=msd_score_gen
)
loss_d = loss_disc_msd + loss_disc_mpd
self.manual_backward(loss_d)
optim_d.step()
# Train generator
optim_g.zero_grad()
loss_mel = F.l1_loss(audio_pred_mel, audio_trg_mel)
_, mpd_score_gen, fmap_mpd_real, fmap_mpd_gen = self.mpd(y=audio, y_hat=audio_pred)
_, msd_score_gen, fmap_msd_real, fmap_msd_gen = self.msd(y=audio, y_hat=audio_pred)
loss_fm_mpd = self.feature_loss(fmap_r=fmap_mpd_real, fmap_g=fmap_mpd_gen)
loss_fm_msd = self.feature_loss(fmap_r=fmap_msd_real, fmap_g=fmap_msd_gen)
loss_gen_mpd, _ = self.generator_loss(disc_outputs=mpd_score_gen)
loss_gen_msd, _ = self.generator_loss(disc_outputs=msd_score_gen)
loss_g = loss_gen_msd + loss_gen_mpd + loss_fm_msd + loss_fm_mpd + loss_mel * self.l1_factor
self.manual_backward(loss_g)
optim_g.step()
self.update_lr()
metrics = {
"g_loss_fm_mpd": loss_fm_mpd,
"g_loss_fm_msd": loss_fm_msd,
"g_loss_gen_mpd": loss_gen_mpd,
"g_loss_gen_msd": loss_gen_msd,
"g_loss": loss_g,
"d_loss_mpd": loss_disc_mpd,
"d_loss_msd": loss_disc_msd,
"d_loss": loss_d,
"global_step": self.global_step,
"lr": optim_g.param_groups[0]['lr'],
}
self.log_dict(metrics, on_step=True, sync_dist=True)
self.log("g_l1_loss", loss_mel, prog_bar=True, logger=False, sync_dist=True)
def on_train_epoch_end(self) -> None:
self.update_lr("epoch")
def validation_step(self, batch, batch_idx):
audio, audio_len, audio_mel, audio_mel_len = self._process_batch(batch)
audio_pred = self(spec=audio_mel)
if self.input_as_mel:
gt_mel, gt_mel_len = self.audio_to_melspec_precessor(audio, audio_len)
audio_pred_mel, _ = self.audio_to_melspec_precessor(audio_pred.squeeze(1), audio_len)
loss_mel = F.l1_loss(audio_mel, audio_pred_mel)
self.log_dict({"val_loss": loss_mel}, on_epoch=True, sync_dist=True)
# Plot audio once per epoch
if self.log_audio and batch_idx == 0 and isinstance(self.logger, WandbLogger) and HAVE_WANDB:
# Perform bias denoising
pred_denoised = self._bias_denoise(audio_pred, audio_mel).squeeze(1)
pred_denoised_mel, _ = self.audio_to_melspec_precessor(pred_denoised, audio_len)
clips = []
specs = []
for i in range(min(5, audio.shape[0])):
clips += [
wandb.Audio(
audio[i, : audio_len[i]].data.cpu().numpy(),
caption=f"real audio {i}",
sample_rate=self.sample_rate,
),
wandb.Audio(
audio_pred[i, 0, : audio_len[i]].data.cpu().numpy().astype('float32'),
caption=f"generated audio {i}",
sample_rate=self.sample_rate,
),
wandb.Audio(
pred_denoised[i, : audio_len[i]].data.cpu().numpy(),
caption=f"denoised audio {i}",
sample_rate=self.sample_rate,
),
]
specs += [
wandb.Image(
plot_spectrogram_to_numpy(audio_mel[i, :, : audio_mel_len[i]].data.cpu().numpy()),
caption=f"input mel {i}",
),
wandb.Image(
plot_spectrogram_to_numpy(audio_pred_mel[i, :, : audio_mel_len[i]].data.cpu().numpy()),
caption=f"output mel {i}",
),
wandb.Image(
plot_spectrogram_to_numpy(pred_denoised_mel[i, :, : audio_mel_len[i]].data.cpu().numpy()),
caption=f"denoised mel {i}",
),
]
if self.input_as_mel:
specs += [
wandb.Image(
plot_spectrogram_to_numpy(gt_mel[i, :, : audio_mel_len[i]].data.cpu().numpy()),
caption=f"gt mel {i}",
),
]
self.logger.experiment.log({"audio": clips, "specs": specs})
def _process_batch(self, batch):
if self.input_as_mel:
audio, audio_len, audio_mel = batch
audio_mel_len = [audio_mel.shape[1]] * audio_mel.shape[0]
return audio, audio_len, audio_mel, audio_mel_len
if self.ds_class == "nemo.collections.tts.data.vocoder_dataset.VocoderDataset":
audio = batch.get("audio")
audio_len = batch.get("audio_lens")
else:
audio, audio_len = batch
audio_mel, audio_mel_len = self.audio_to_melspec_precessor(audio, audio_len)
return audio, audio_len, audio_mel, audio_mel_len
def _bias_denoise(self, audio, mel):
def stft(x):
comp = torch.stft(x.squeeze(1), n_fft=1024, hop_length=256, win_length=1024, return_complex=True)
comp = torch.view_as_real(comp)
real, imag = comp[..., 0], comp[..., 1]
mags = torch.sqrt(real**2 + imag**2)
phase = torch.atan2(imag, real)
return mags, phase
def istft(mags, phase):
comp = torch.stack([mags * torch.cos(phase), mags * torch.sin(phase)], dim=-1)
x = torch.istft(torch.view_as_complex(comp), n_fft=1024, hop_length=256, win_length=1024)
return x
# Create bias tensor
if self.stft_bias is None or self.stft_bias.shape[0] != audio.shape[0]:
audio_bias = self(spec=torch.zeros_like(mel, device=mel.device))
self.stft_bias, _ = stft(audio_bias)
self.stft_bias = self.stft_bias[:, :, 0][:, :, None]
audio_mags, audio_phase = stft(audio)
audio_mags = audio_mags - self.cfg.get("denoise_strength", 0.0025) * self.stft_bias
audio_mags = torch.clamp(audio_mags, 0.0)
audio_denoised = istft(audio_mags, audio_phase).unsqueeze(1)
return audio_denoised
def _setup_train_dataloader(self, cfg):
dataset = instantiate(cfg.dataset)
sampler = dataset.get_sampler(cfg.dataloader_params.batch_size, world_size=self.trainer.world_size)
data_loader = torch.utils.data.DataLoader(
dataset, collate_fn=dataset.collate_fn, sampler=sampler, **cfg.dataloader_params
)
return data_loader
def _setup_test_dataloader(self, cfg):
dataset = instantiate(cfg.dataset)
data_loader = torch.utils.data.DataLoader(dataset, collate_fn=dataset.collate_fn, **cfg.dataloader_params)
return data_loader
def __setup_dataloader_from_config(self, cfg, shuffle_should_be: bool = True, name: str = "train"):
if "dataset" not in cfg or not isinstance(cfg.dataset, DictConfig):
raise ValueError(f"No dataset for {name}")
if "dataloader_params" not in cfg or not isinstance(cfg.dataloader_params, DictConfig):
raise ValueError(f"No dataloader_params for {name}")
if shuffle_should_be:
if 'shuffle' not in cfg.dataloader_params:
logging.warning(
f"Shuffle should be set to True for {self}'s {name} dataloader but was not found in its "
"config. Manually setting to True"
)
with open_dict(cfg["dataloader_params"]):
cfg.dataloader_params.shuffle = True
elif not cfg.dataloader_params.shuffle:
logging.error(f"The {name} dataloader for {self} has shuffle set to False!!!")
elif not shuffle_should_be and cfg.dataloader_params.shuffle:
logging.error(f"The {name} dataloader for {self} has shuffle set to True!!!")
dataset = instantiate(cfg.dataset)
return torch.utils.data.DataLoader(dataset, collate_fn=dataset.collate_fn, **cfg.dataloader_params)
def setup_training_data(self, cfg):
if self.ds_class == "nemo.collections.tts.data.vocoder_dataset.VocoderDataset":
self._train_dl = self._setup_train_dataloader(cfg)
else:
self._train_dl = self.__setup_dataloader_from_config(cfg)
def setup_validation_data(self, cfg):
if self.ds_class == "nemo.collections.tts.data.vocoder_dataset.VocoderDataset":
self._validation_dl = self._setup_test_dataloader(cfg)
else:
self._validation_dl = self.__setup_dataloader_from_config(cfg, shuffle_should_be=False, name="validation")
def setup_test_data(self, cfg):
pass
def configure_callbacks(self):
if not self.log_config:
return []
sample_ds_class = self.log_config.dataset._target_
if sample_ds_class != "nemo.collections.tts.data.vocoder_dataset.VocoderDataset":
raise ValueError(f"Sample logging only supported for VocoderDataset, got {sample_ds_class}")
data_loader = self._setup_test_dataloader(self.log_config)
generators = instantiate(self.log_config.generators)
log_dir = Path(self.log_config.log_dir) if self.log_config.log_dir else None
log_callback = LoggingCallback(
generators=generators,
data_loader=data_loader,
log_epochs=self.log_config.log_epochs,
epoch_frequency=self.log_config.epoch_frequency,
output_dir=log_dir,
loggers=self.trainer.loggers,
log_tensorboard=self.log_config.log_tensorboard,
log_wandb=self.log_config.log_wandb,
)
return [log_callback]
@classmethod
def list_available_models(cls) -> 'Optional[Dict[str, str]]':
list_of_models = []
model = PretrainedModelInfo(
pretrained_model_name="tts_en_hifigan",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_hifigan/versions/1.0.0rc1/files/tts_hifigan.nemo",
description="This model is trained on LJSpeech audio sampled at 22050Hz and mel spectrograms generated from"
" Tacotron2, TalkNet, and FastPitch. This model has been tested on generating female English "
"voices with an American accent.",
class_=cls,
)
list_of_models.append(model)
model = PretrainedModelInfo(
pretrained_model_name="tts_en_lj_hifigan_ft_mixertts",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_lj_hifigan/versions/1.6.0/files/tts_en_lj_hifigan_ft_mixertts.nemo",
description="This model is trained on LJSpeech audio sampled at 22050Hz and mel spectrograms generated from"
" Mixer-TTS. This model has been tested on generating female English voices with an American accent.",
class_=cls,
)
list_of_models.append(model)
model = PretrainedModelInfo(
pretrained_model_name="tts_en_lj_hifigan_ft_mixerttsx",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_lj_hifigan/versions/1.6.0/files/tts_en_lj_hifigan_ft_mixerttsx.nemo",
description="This model is trained on LJSpeech audio sampled at 22050Hz and mel spectrograms generated from"
" Mixer-TTS-X. This model has been tested on generating female English voices with an American accent.",
class_=cls,
)
list_of_models.append(model)
model = PretrainedModelInfo(
pretrained_model_name="tts_en_hifitts_hifigan_ft_fastpitch",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_multispeaker_fastpitchhifigan/versions/1.10.0/files/tts_en_hifitts_hifigan_ft_fastpitch.nemo",
description="This model is trained on HiFiTTS audio sampled at 44100Hz and mel spectrograms generated from"
" FastPitch. This model has been tested on generating male and female English voices with an American accent.",
class_=cls,
)
list_of_models.append(model)
# de-DE, single male speaker, 22050 Hz, Thorsten Müller’s German Neutral-TTS Dataset, 21.02
model = PretrainedModelInfo(
pretrained_model_name="tts_de_hifigan_singleSpeaker_thorstenNeutral_2102",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_de_fastpitchhifigan/versions/1.15.0/files/tts_de_hifigan_thorstens2102.nemo",
description="This model is finetuned from the HiFiGAN pretrained checkpoint `tts_en_lj_hifigan_ft_mixerttsx`"
" by the mel-spectrograms generated from the FastPitch checkpoint `tts_de_fastpitch_singleSpeaker_thorstenNeutral_2102`."
" This model has been tested on generating male German neutral voices.",
class_=cls,
)
list_of_models.append(model)
# de-DE, single male speaker, 22050 Hz, Thorsten Müller’s German Neutral-TTS Dataset, 22.10
model = PretrainedModelInfo(
pretrained_model_name="tts_de_hifigan_singleSpeaker_thorstenNeutral_2210",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_de_fastpitchhifigan/versions/1.15.0/files/tts_de_hifigan_thorstens2210.nemo",
description="This model is finetuned from the HiFiGAN pretrained checkpoint `tts_en_lj_hifigan_ft_mixerttsx`"
" by the mel-spectrograms generated from the FastPitch checkpoint `tts_de_fastpitch_singleSpeaker_thorstenNeutral_2210`."
" This model has been tested on generating male German neutral voices.",
class_=cls,
)
list_of_models.append(model)
# de-DE, multi-speaker, 5 speakers, 44100 Hz, HUI-Audio-Corpus-German Clean.
model = PretrainedModelInfo(
pretrained_model_name="tts_de_hui_hifigan_ft_fastpitch_multispeaker_5",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_de_fastpitch_multispeaker_5/versions/1.11.0/files/tts_de_hui_hifigan_ft_fastpitch_multispeaker_5.nemo",
description="This model is finetuned from the HiFiGAN pretrained checkpoint `tts_en_hifitts_hifigan_ft_fastpitch` "
"by the mel-spectrograms generated from the FastPitch checkpoint `tts_de_fastpitch_multispeaker_5`. This model "
"has been tested on generating male and female German voices.",
class_=cls,
)
list_of_models.append(model)
# Spanish, multi-speaker, 44100 Hz, Latin American Spanish OpenSLR
model = PretrainedModelInfo(
pretrained_model_name="tts_es_hifigan_ft_fastpitch_multispeaker",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_es_multispeaker_fastpitchhifigan/versions/1.15.0/files/tts_es_hifigan_ft_fastpitch_multispeaker.nemo",
description="This model is trained on the audio from 6 crowdsourced Latin American Spanish OpenSLR "
"datasets and finetuned on the mel-spectrograms generated from the FastPitch checkpoint "
"`tts_es_fastpitch_multispeaker`. This model has been tested on generating male and female "
"Spanish voices with Latin American accents.",
class_=cls,
)
list_of_models.append(model)
# zh, single female speaker, 22050Hz, SFSpeech Bilingual Chinese/English dataset, improved model using richer
# dict and jieba word segmenter for polyphone disambiguation.
model = PretrainedModelInfo(
pretrained_model_name="tts_zh_hifigan_sfspeech",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_zh_fastpitch_hifigan_sfspeech/versions/1.15.0/files/tts_zh_hifigan_sfspeech.nemo",
description="This model is finetuned from the HiFiGAN pretrained checkpoint `tts_en_lj_hifigan_ft_mixerttsx`"
" by the mel-spectrograms generated from the FastPitch checkpoint `tts_zh_fastpitch_sfspeech`."
" This model has been tested on generating female Mandarin Chinese voices.",
class_=cls,
)
list_of_models.append(model)
return list_of_models
def load_state_dict(self, state_dict, strict=True):
# Override load_state_dict to give us some flexibility to be backward-compatible with old checkpoints
new_state_dict = {}
num_resblocks = len(self.cfg['generator']['resblock_kernel_sizes'])
for k, v in state_dict.items():
new_k = k
if 'resblocks' in k:
parts = k.split(".")
# only do this is the checkpoint type is older
if len(parts) == 6:
layer = int(parts[2])
new_layer = f"{layer // num_resblocks}.{layer % num_resblocks}"
new_k = f"generator.resblocks.{new_layer}.{'.'.join(parts[3:])}"
new_state_dict[new_k] = v
super().load_state_dict(new_state_dict, strict=strict)
# Methods for model exportability
def _prepare_for_export(self, **kwargs):
if self.generator is not None:
try:
self.generator.remove_weight_norm()
except ValueError:
return
@property
def input_types(self):
return {
"spec": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
}
@property
def output_types(self):
return {
"audio": NeuralType(('B', 'S', 'T'), AudioSignal(self.sample_rate)),
}
def input_example(self, max_batch=1, max_dim=256):
"""
Generates input examples for tracing etc.
Returns:
A tuple of input examples.
"""
par = next(self.parameters())
mel = torch.randn((max_batch, self.cfg['preprocessor']['nfilt'], max_dim), device=self.device, dtype=par.dtype)
return ({'spec': mel},)
def forward_for_export(self, spec):
"""
Runs the generator, for inputs and outputs see input_types, and output_types
"""
return self.generator(x=spec)
|