File size: 25,933 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import itertools
from pathlib import Path

import torch
import torch.nn.functional as F
from hydra.utils import instantiate
from lightning.pytorch.loggers.wandb import WandbLogger
from omegaconf import DictConfig, OmegaConf, open_dict

from nemo.collections.tts.losses.hifigan_losses import DiscriminatorLoss, FeatureMatchingLoss, GeneratorLoss
from nemo.collections.tts.models.base import Vocoder
from nemo.collections.tts.modules.hifigan_modules import MultiPeriodDiscriminator, MultiScaleDiscriminator
from nemo.collections.tts.parts.utils.callbacks import LoggingCallback
from nemo.collections.tts.parts.utils.helpers import get_batch_size, get_num_workers, plot_spectrogram_to_numpy
from nemo.core.classes import Exportable
from nemo.core.classes.common import PretrainedModelInfo, typecheck
from nemo.core.neural_types.elements import AudioSignal, MelSpectrogramType
from nemo.core.neural_types.neural_type import NeuralType
from nemo.core.optim.lr_scheduler import compute_max_steps, prepare_lr_scheduler
from nemo.utils import logging, model_utils

HAVE_WANDB = True
try:
    import wandb
except ModuleNotFoundError:
    HAVE_WANDB = False


class HifiGanModel(Vocoder, Exportable):
    """
    HiFi-GAN model (https://arxiv.org/abs/2010.05646) that is used to generate audio from mel spectrogram.
    """

    def __init__(self, cfg: DictConfig, trainer: 'Trainer' = None):
        # Convert to Hydra 1.0 compatible DictConfig
        cfg = model_utils.convert_model_config_to_dict_config(cfg)
        cfg = model_utils.maybe_update_config_version(cfg)
        self.ds_class = cfg.train_ds.dataset._target_

        super().__init__(cfg=cfg, trainer=trainer)

        self.audio_to_melspec_precessor = instantiate(cfg.preprocessor)
        # We use separate preprocessor for training, because we need to pass grads and remove pitch fmax limitation
        self.trg_melspec_fn = instantiate(cfg.preprocessor, highfreq=None, use_grads=True)
        self.generator = instantiate(cfg.generator)
        self.mpd = MultiPeriodDiscriminator(debug=cfg.debug if "debug" in cfg else False)
        self.msd = MultiScaleDiscriminator(debug=cfg.debug if "debug" in cfg else False)
        self.feature_loss = FeatureMatchingLoss()
        self.discriminator_loss = DiscriminatorLoss()
        self.generator_loss = GeneratorLoss()

        self.l1_factor = cfg.get("l1_loss_factor", 45)

        self.sample_rate = self._cfg.preprocessor.sample_rate
        self.stft_bias = None

        self.input_as_mel = False
        if self._train_dl:
            self.input_as_mel = self._train_dl.dataset.load_precomputed_mel

        self.log_audio = cfg.get("log_audio", False)
        self.log_config = cfg.get("log_config", None)
        self.lr_schedule_interval = None

        # Important: this property activates manual optimization.
        self.automatic_optimization = False

    @property
    def max_steps(self):
        if "max_steps" in self._cfg:
            return self._cfg.get("max_steps")

        if "max_epochs" not in self._cfg:
            raise ValueError("Must specify 'max_steps' or 'max_epochs'.")

        if "steps_per_epoch" in self._cfg:
            return self._cfg.max_epochs * self._cfg.steps_per_epoch

        return compute_max_steps(
            max_epochs=self._cfg.max_epochs,
            accumulate_grad_batches=self.trainer.accumulate_grad_batches,
            limit_train_batches=self.trainer.limit_train_batches,
            num_workers=get_num_workers(self.trainer),
            num_samples=len(self._train_dl.dataset),
            batch_size=get_batch_size(self._train_dl),
            drop_last=self._train_dl.drop_last,
        )

    @staticmethod
    def get_warmup_steps(max_steps, warmup_steps, warmup_ratio):
        if warmup_steps is not None:
            return warmup_steps

        if warmup_ratio is not None:
            return warmup_ratio * max_steps

        return None

    def configure_optimizers(self):
        optim_config = self._cfg.optim.copy()

        OmegaConf.set_struct(optim_config, False)
        sched_config = optim_config.pop("sched", None)
        OmegaConf.set_struct(optim_config, True)

        gen_params = self.generator.parameters()
        disc_params = itertools.chain(self.msd.parameters(), self.mpd.parameters())
        optim_g = instantiate(optim_config, params=gen_params)
        optim_d = instantiate(optim_config, params=disc_params)

        if sched_config is None:
            return [optim_g, optim_d]

        max_steps = self.max_steps
        warmup_steps = self.get_warmup_steps(
            max_steps=max_steps,
            warmup_steps=sched_config.get("warmup_steps", None),
            warmup_ratio=sched_config.get("warmup_ratio", None),
        )

        OmegaConf.set_struct(sched_config, False)
        sched_config["max_steps"] = max_steps
        if warmup_steps:
            sched_config["warmup_steps"] = warmup_steps
            sched_config.pop("warmup_ratio", None)
        OmegaConf.set_struct(sched_config, True)

        scheduler_g = prepare_lr_scheduler(
            optimizer=optim_g, scheduler_config=sched_config, train_dataloader=self._train_dl
        )

        scheduler_d = prepare_lr_scheduler(
            optimizer=optim_d, scheduler_config=sched_config, train_dataloader=self._train_dl
        )

        self.lr_schedule_interval = scheduler_g["interval"]

        return [optim_g, optim_d], [scheduler_g, scheduler_d]

    def update_lr(self, interval="step"):
        schedulers = self.lr_schedulers()
        if schedulers is not None and self.lr_schedule_interval == interval:
            sch1, sch2 = schedulers
            sch1.step()
            sch2.step()

    @typecheck()
    def forward(self, *, spec):
        """
        Runs the generator, for inputs and outputs see input_types, and output_types
        """
        return self.generator(x=spec)

    @typecheck(
        input_types={"spec": NeuralType(('B', 'C', 'T'), MelSpectrogramType())},
        output_types={"audio": NeuralType(('B', 'T'), AudioSignal())},
    )
    def convert_spectrogram_to_audio(self, spec: 'torch.tensor') -> 'torch.tensor':
        return self(spec=spec).squeeze(1)

    def training_step(self, batch, batch_idx):
        audio, audio_len, audio_mel, _ = self._process_batch(batch)

        # Mel as input for L1 mel loss
        audio_trg_mel, _ = self.trg_melspec_fn(audio, audio_len)
        audio = audio.unsqueeze(1)

        audio_pred = self.generator(x=audio_mel)
        audio_pred_mel, _ = self.trg_melspec_fn(audio_pred.squeeze(1), audio_len)

        optim_g, optim_d = self.optimizers()

        # Train discriminator
        optim_d.zero_grad()
        mpd_score_real, mpd_score_gen, _, _ = self.mpd(y=audio, y_hat=audio_pred.detach())
        loss_disc_mpd, _, _ = self.discriminator_loss(
            disc_real_outputs=mpd_score_real, disc_generated_outputs=mpd_score_gen
        )
        msd_score_real, msd_score_gen, _, _ = self.msd(y=audio, y_hat=audio_pred.detach())
        loss_disc_msd, _, _ = self.discriminator_loss(
            disc_real_outputs=msd_score_real, disc_generated_outputs=msd_score_gen
        )
        loss_d = loss_disc_msd + loss_disc_mpd
        self.manual_backward(loss_d)
        optim_d.step()

        # Train generator
        optim_g.zero_grad()
        loss_mel = F.l1_loss(audio_pred_mel, audio_trg_mel)
        _, mpd_score_gen, fmap_mpd_real, fmap_mpd_gen = self.mpd(y=audio, y_hat=audio_pred)
        _, msd_score_gen, fmap_msd_real, fmap_msd_gen = self.msd(y=audio, y_hat=audio_pred)
        loss_fm_mpd = self.feature_loss(fmap_r=fmap_mpd_real, fmap_g=fmap_mpd_gen)
        loss_fm_msd = self.feature_loss(fmap_r=fmap_msd_real, fmap_g=fmap_msd_gen)
        loss_gen_mpd, _ = self.generator_loss(disc_outputs=mpd_score_gen)
        loss_gen_msd, _ = self.generator_loss(disc_outputs=msd_score_gen)
        loss_g = loss_gen_msd + loss_gen_mpd + loss_fm_msd + loss_fm_mpd + loss_mel * self.l1_factor
        self.manual_backward(loss_g)
        optim_g.step()

        self.update_lr()

        metrics = {
            "g_loss_fm_mpd": loss_fm_mpd,
            "g_loss_fm_msd": loss_fm_msd,
            "g_loss_gen_mpd": loss_gen_mpd,
            "g_loss_gen_msd": loss_gen_msd,
            "g_loss": loss_g,
            "d_loss_mpd": loss_disc_mpd,
            "d_loss_msd": loss_disc_msd,
            "d_loss": loss_d,
            "global_step": self.global_step,
            "lr": optim_g.param_groups[0]['lr'],
        }
        self.log_dict(metrics, on_step=True, sync_dist=True)
        self.log("g_l1_loss", loss_mel, prog_bar=True, logger=False, sync_dist=True)

    def on_train_epoch_end(self) -> None:
        self.update_lr("epoch")

    def validation_step(self, batch, batch_idx):
        audio, audio_len, audio_mel, audio_mel_len = self._process_batch(batch)

        audio_pred = self(spec=audio_mel)

        if self.input_as_mel:
            gt_mel, gt_mel_len = self.audio_to_melspec_precessor(audio, audio_len)
        audio_pred_mel, _ = self.audio_to_melspec_precessor(audio_pred.squeeze(1), audio_len)
        loss_mel = F.l1_loss(audio_mel, audio_pred_mel)

        self.log_dict({"val_loss": loss_mel}, on_epoch=True, sync_dist=True)

        # Plot audio once per epoch
        if self.log_audio and batch_idx == 0 and isinstance(self.logger, WandbLogger) and HAVE_WANDB:
            # Perform bias denoising
            pred_denoised = self._bias_denoise(audio_pred, audio_mel).squeeze(1)
            pred_denoised_mel, _ = self.audio_to_melspec_precessor(pred_denoised, audio_len)

            clips = []
            specs = []
            for i in range(min(5, audio.shape[0])):
                clips += [
                    wandb.Audio(
                        audio[i, : audio_len[i]].data.cpu().numpy(),
                        caption=f"real audio {i}",
                        sample_rate=self.sample_rate,
                    ),
                    wandb.Audio(
                        audio_pred[i, 0, : audio_len[i]].data.cpu().numpy().astype('float32'),
                        caption=f"generated audio {i}",
                        sample_rate=self.sample_rate,
                    ),
                    wandb.Audio(
                        pred_denoised[i, : audio_len[i]].data.cpu().numpy(),
                        caption=f"denoised audio {i}",
                        sample_rate=self.sample_rate,
                    ),
                ]
                specs += [
                    wandb.Image(
                        plot_spectrogram_to_numpy(audio_mel[i, :, : audio_mel_len[i]].data.cpu().numpy()),
                        caption=f"input mel {i}",
                    ),
                    wandb.Image(
                        plot_spectrogram_to_numpy(audio_pred_mel[i, :, : audio_mel_len[i]].data.cpu().numpy()),
                        caption=f"output mel {i}",
                    ),
                    wandb.Image(
                        plot_spectrogram_to_numpy(pred_denoised_mel[i, :, : audio_mel_len[i]].data.cpu().numpy()),
                        caption=f"denoised mel {i}",
                    ),
                ]
                if self.input_as_mel:
                    specs += [
                        wandb.Image(
                            plot_spectrogram_to_numpy(gt_mel[i, :, : audio_mel_len[i]].data.cpu().numpy()),
                            caption=f"gt mel {i}",
                        ),
                    ]

            self.logger.experiment.log({"audio": clips, "specs": specs})

    def _process_batch(self, batch):
        if self.input_as_mel:
            audio, audio_len, audio_mel = batch
            audio_mel_len = [audio_mel.shape[1]] * audio_mel.shape[0]
            return audio, audio_len, audio_mel, audio_mel_len

        if self.ds_class == "nemo.collections.tts.data.vocoder_dataset.VocoderDataset":
            audio = batch.get("audio")
            audio_len = batch.get("audio_lens")
        else:
            audio, audio_len = batch

        audio_mel, audio_mel_len = self.audio_to_melspec_precessor(audio, audio_len)
        return audio, audio_len, audio_mel, audio_mel_len

    def _bias_denoise(self, audio, mel):
        def stft(x):
            comp = torch.stft(x.squeeze(1), n_fft=1024, hop_length=256, win_length=1024, return_complex=True)
            comp = torch.view_as_real(comp)
            real, imag = comp[..., 0], comp[..., 1]
            mags = torch.sqrt(real**2 + imag**2)
            phase = torch.atan2(imag, real)
            return mags, phase

        def istft(mags, phase):
            comp = torch.stack([mags * torch.cos(phase), mags * torch.sin(phase)], dim=-1)
            x = torch.istft(torch.view_as_complex(comp), n_fft=1024, hop_length=256, win_length=1024)
            return x

        # Create bias tensor
        if self.stft_bias is None or self.stft_bias.shape[0] != audio.shape[0]:
            audio_bias = self(spec=torch.zeros_like(mel, device=mel.device))
            self.stft_bias, _ = stft(audio_bias)
            self.stft_bias = self.stft_bias[:, :, 0][:, :, None]

        audio_mags, audio_phase = stft(audio)
        audio_mags = audio_mags - self.cfg.get("denoise_strength", 0.0025) * self.stft_bias
        audio_mags = torch.clamp(audio_mags, 0.0)
        audio_denoised = istft(audio_mags, audio_phase).unsqueeze(1)

        return audio_denoised

    def _setup_train_dataloader(self, cfg):
        dataset = instantiate(cfg.dataset)
        sampler = dataset.get_sampler(cfg.dataloader_params.batch_size, world_size=self.trainer.world_size)
        data_loader = torch.utils.data.DataLoader(
            dataset, collate_fn=dataset.collate_fn, sampler=sampler, **cfg.dataloader_params
        )
        return data_loader

    def _setup_test_dataloader(self, cfg):
        dataset = instantiate(cfg.dataset)
        data_loader = torch.utils.data.DataLoader(dataset, collate_fn=dataset.collate_fn, **cfg.dataloader_params)
        return data_loader

    def __setup_dataloader_from_config(self, cfg, shuffle_should_be: bool = True, name: str = "train"):
        if "dataset" not in cfg or not isinstance(cfg.dataset, DictConfig):
            raise ValueError(f"No dataset for {name}")
        if "dataloader_params" not in cfg or not isinstance(cfg.dataloader_params, DictConfig):
            raise ValueError(f"No dataloader_params for {name}")
        if shuffle_should_be:
            if 'shuffle' not in cfg.dataloader_params:
                logging.warning(
                    f"Shuffle should be set to True for {self}'s {name} dataloader but was not found in its "
                    "config. Manually setting to True"
                )
                with open_dict(cfg["dataloader_params"]):
                    cfg.dataloader_params.shuffle = True
            elif not cfg.dataloader_params.shuffle:
                logging.error(f"The {name} dataloader for {self} has shuffle set to False!!!")
        elif not shuffle_should_be and cfg.dataloader_params.shuffle:
            logging.error(f"The {name} dataloader for {self} has shuffle set to True!!!")

        dataset = instantiate(cfg.dataset)
        return torch.utils.data.DataLoader(dataset, collate_fn=dataset.collate_fn, **cfg.dataloader_params)

    def setup_training_data(self, cfg):
        if self.ds_class == "nemo.collections.tts.data.vocoder_dataset.VocoderDataset":
            self._train_dl = self._setup_train_dataloader(cfg)
        else:
            self._train_dl = self.__setup_dataloader_from_config(cfg)

    def setup_validation_data(self, cfg):
        if self.ds_class == "nemo.collections.tts.data.vocoder_dataset.VocoderDataset":
            self._validation_dl = self._setup_test_dataloader(cfg)
        else:
            self._validation_dl = self.__setup_dataloader_from_config(cfg, shuffle_should_be=False, name="validation")

    def setup_test_data(self, cfg):
        pass

    def configure_callbacks(self):
        if not self.log_config:
            return []

        sample_ds_class = self.log_config.dataset._target_
        if sample_ds_class != "nemo.collections.tts.data.vocoder_dataset.VocoderDataset":
            raise ValueError(f"Sample logging only supported for VocoderDataset, got {sample_ds_class}")

        data_loader = self._setup_test_dataloader(self.log_config)
        generators = instantiate(self.log_config.generators)
        log_dir = Path(self.log_config.log_dir) if self.log_config.log_dir else None
        log_callback = LoggingCallback(
            generators=generators,
            data_loader=data_loader,
            log_epochs=self.log_config.log_epochs,
            epoch_frequency=self.log_config.epoch_frequency,
            output_dir=log_dir,
            loggers=self.trainer.loggers,
            log_tensorboard=self.log_config.log_tensorboard,
            log_wandb=self.log_config.log_wandb,
        )

        return [log_callback]

    @classmethod
    def list_available_models(cls) -> 'Optional[Dict[str, str]]':
        list_of_models = []
        model = PretrainedModelInfo(
            pretrained_model_name="tts_en_hifigan",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_hifigan/versions/1.0.0rc1/files/tts_hifigan.nemo",
            description="This model is trained on LJSpeech audio sampled at 22050Hz and mel spectrograms generated from"
            " Tacotron2, TalkNet, and FastPitch. This model has been tested on generating female English "
            "voices with an American accent.",
            class_=cls,
        )
        list_of_models.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="tts_en_lj_hifigan_ft_mixertts",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_lj_hifigan/versions/1.6.0/files/tts_en_lj_hifigan_ft_mixertts.nemo",
            description="This model is trained on LJSpeech audio sampled at 22050Hz and mel spectrograms generated from"
            " Mixer-TTS. This model has been tested on generating female English voices with an American accent.",
            class_=cls,
        )
        list_of_models.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="tts_en_lj_hifigan_ft_mixerttsx",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_lj_hifigan/versions/1.6.0/files/tts_en_lj_hifigan_ft_mixerttsx.nemo",
            description="This model is trained on LJSpeech audio sampled at 22050Hz and mel spectrograms generated from"
            " Mixer-TTS-X. This model has been tested on generating female English voices with an American accent.",
            class_=cls,
        )
        list_of_models.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="tts_en_hifitts_hifigan_ft_fastpitch",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_multispeaker_fastpitchhifigan/versions/1.10.0/files/tts_en_hifitts_hifigan_ft_fastpitch.nemo",
            description="This model is trained on HiFiTTS audio sampled at 44100Hz and mel spectrograms generated from"
            " FastPitch. This model has been tested on generating male and female English voices with an American accent.",
            class_=cls,
        )
        list_of_models.append(model)

        # de-DE, single male speaker, 22050 Hz, Thorsten Müller’s German Neutral-TTS Dataset, 21.02
        model = PretrainedModelInfo(
            pretrained_model_name="tts_de_hifigan_singleSpeaker_thorstenNeutral_2102",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_de_fastpitchhifigan/versions/1.15.0/files/tts_de_hifigan_thorstens2102.nemo",
            description="This model is finetuned from the HiFiGAN pretrained checkpoint `tts_en_lj_hifigan_ft_mixerttsx`"
            " by the mel-spectrograms generated from the FastPitch checkpoint `tts_de_fastpitch_singleSpeaker_thorstenNeutral_2102`."
            " This model has been tested on generating male German neutral voices.",
            class_=cls,
        )
        list_of_models.append(model)

        # de-DE, single male speaker, 22050 Hz, Thorsten Müller’s German Neutral-TTS Dataset, 22.10
        model = PretrainedModelInfo(
            pretrained_model_name="tts_de_hifigan_singleSpeaker_thorstenNeutral_2210",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_de_fastpitchhifigan/versions/1.15.0/files/tts_de_hifigan_thorstens2210.nemo",
            description="This model is finetuned from the HiFiGAN pretrained checkpoint `tts_en_lj_hifigan_ft_mixerttsx`"
            " by the mel-spectrograms generated from the FastPitch checkpoint `tts_de_fastpitch_singleSpeaker_thorstenNeutral_2210`."
            " This model has been tested on generating male German neutral voices.",
            class_=cls,
        )
        list_of_models.append(model)

        # de-DE, multi-speaker, 5 speakers, 44100 Hz, HUI-Audio-Corpus-German Clean.
        model = PretrainedModelInfo(
            pretrained_model_name="tts_de_hui_hifigan_ft_fastpitch_multispeaker_5",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_de_fastpitch_multispeaker_5/versions/1.11.0/files/tts_de_hui_hifigan_ft_fastpitch_multispeaker_5.nemo",
            description="This model is finetuned from the HiFiGAN pretrained checkpoint `tts_en_hifitts_hifigan_ft_fastpitch` "
            "by the mel-spectrograms generated from the FastPitch checkpoint `tts_de_fastpitch_multispeaker_5`. This model "
            "has been tested on generating male and female German voices.",
            class_=cls,
        )
        list_of_models.append(model)

        # Spanish, multi-speaker, 44100 Hz, Latin American Spanish OpenSLR
        model = PretrainedModelInfo(
            pretrained_model_name="tts_es_hifigan_ft_fastpitch_multispeaker",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_es_multispeaker_fastpitchhifigan/versions/1.15.0/files/tts_es_hifigan_ft_fastpitch_multispeaker.nemo",
            description="This model is trained on the audio from 6 crowdsourced Latin American Spanish OpenSLR "
            "datasets and finetuned on the mel-spectrograms generated from the FastPitch checkpoint "
            "`tts_es_fastpitch_multispeaker`. This model has been tested on generating male and female "
            "Spanish voices with Latin American accents.",
            class_=cls,
        )
        list_of_models.append(model)

        # zh, single female speaker, 22050Hz, SFSpeech Bilingual Chinese/English dataset, improved model using richer
        # dict and jieba word segmenter for polyphone disambiguation.
        model = PretrainedModelInfo(
            pretrained_model_name="tts_zh_hifigan_sfspeech",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_zh_fastpitch_hifigan_sfspeech/versions/1.15.0/files/tts_zh_hifigan_sfspeech.nemo",
            description="This model is finetuned from the HiFiGAN pretrained checkpoint `tts_en_lj_hifigan_ft_mixerttsx`"
            " by the mel-spectrograms generated from the FastPitch checkpoint `tts_zh_fastpitch_sfspeech`."
            " This model has been tested on generating female Mandarin Chinese voices.",
            class_=cls,
        )
        list_of_models.append(model)

        return list_of_models

    def load_state_dict(self, state_dict, strict=True):
        # Override load_state_dict to give us some flexibility to be backward-compatible with old checkpoints
        new_state_dict = {}
        num_resblocks = len(self.cfg['generator']['resblock_kernel_sizes'])
        for k, v in state_dict.items():
            new_k = k
            if 'resblocks' in k:
                parts = k.split(".")
                # only do this is the checkpoint type is older
                if len(parts) == 6:
                    layer = int(parts[2])
                    new_layer = f"{layer // num_resblocks}.{layer % num_resblocks}"
                    new_k = f"generator.resblocks.{new_layer}.{'.'.join(parts[3:])}"
            new_state_dict[new_k] = v
        super().load_state_dict(new_state_dict, strict=strict)

    # Methods for model exportability
    def _prepare_for_export(self, **kwargs):
        if self.generator is not None:
            try:
                self.generator.remove_weight_norm()
            except ValueError:
                return

    @property
    def input_types(self):
        return {
            "spec": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
        }

    @property
    def output_types(self):
        return {
            "audio": NeuralType(('B', 'S', 'T'), AudioSignal(self.sample_rate)),
        }

    def input_example(self, max_batch=1, max_dim=256):
        """
        Generates input examples for tracing etc.
        Returns:
            A tuple of input examples.
        """
        par = next(self.parameters())
        mel = torch.randn((max_batch, self.cfg['preprocessor']['nfilt'], max_dim), device=self.device, dtype=par.dtype)
        return ({'spec': mel},)

    def forward_for_export(self, spec):
        """
        Runs the generator, for inputs and outputs see input_types, and output_types
        """
        return self.generator(x=spec)