Spaces:
Runtime error
Runtime error
File size: 17,538 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
from typing import Dict
import torch
import torch.nn.functional as F
from hydra.utils import instantiate
from lightning.pytorch.loggers.wandb import WandbLogger
from omegaconf import DictConfig, OmegaConf, open_dict
from nemo.collections.tts.losses.hifigan_losses import DiscriminatorLoss, GeneratorLoss
from nemo.collections.tts.losses.stftlosses import MultiResolutionSTFTLoss
from nemo.collections.tts.models.base import Vocoder
from nemo.collections.tts.modules.univnet_modules import MultiPeriodDiscriminator, MultiResolutionDiscriminator
from nemo.collections.tts.parts.utils.helpers import get_batch_size, get_num_workers, plot_spectrogram_to_numpy
from nemo.core import Exportable
from nemo.core.classes.common import PretrainedModelInfo, typecheck
from nemo.core.neural_types.elements import AudioSignal, MelSpectrogramType
from nemo.core.neural_types.neural_type import NeuralType
from nemo.core.optim.lr_scheduler import compute_max_steps, prepare_lr_scheduler
from nemo.utils import logging, model_utils
HAVE_WANDB = True
try:
import wandb
except ModuleNotFoundError:
HAVE_WANDB = False
class UnivNetModel(Vocoder, Exportable):
"""UnivNet model (https://arxiv.org/abs/2106.07889) that is used to generate audio from mel spectrogram."""
def __init__(self, cfg: DictConfig, trainer: 'Trainer' = None):
# Convert to Hydra 1.0 compatible DictConfig
cfg = model_utils.convert_model_config_to_dict_config(cfg)
cfg = model_utils.maybe_update_config_version(cfg)
super().__init__(cfg=cfg, trainer=trainer)
self.audio_to_melspec_precessor = instantiate(cfg.preprocessor)
# We use separate preprocessor for training, because we need to pass grads and remove pitch fmax limitation
self.trg_melspec_fn = instantiate(cfg.preprocessor, highfreq=None, use_grads=True)
self.generator = instantiate(
cfg.generator, n_mel_channels=cfg.preprocessor.nfilt, hop_length=cfg.preprocessor.n_window_stride
)
self.mpd = MultiPeriodDiscriminator(cfg.discriminator.mpd, debug=cfg.debug if "debug" in cfg else False)
self.mrd = MultiResolutionDiscriminator(cfg.discriminator.mrd, debug=cfg.debug if "debug" in cfg else False)
self.discriminator_loss = DiscriminatorLoss()
self.generator_loss = GeneratorLoss()
# Reshape MRD resolutions hyperparameter and apply them to MRSTFT loss
self.stft_resolutions = cfg.discriminator.mrd.resolutions
self.fft_sizes = [res[0] for res in self.stft_resolutions]
self.hop_sizes = [res[1] for res in self.stft_resolutions]
self.win_lengths = [res[2] for res in self.stft_resolutions]
self.mrstft_loss = MultiResolutionSTFTLoss(self.fft_sizes, self.hop_sizes, self.win_lengths)
self.stft_lamb = cfg.stft_lamb
self.sample_rate = self._cfg.preprocessor.sample_rate
self.stft_bias = None
self.input_as_mel = False
if self._train_dl:
self.input_as_mel = self._train_dl.dataset.load_precomputed_mel
self.automatic_optimization = False
def _get_max_steps(self):
return compute_max_steps(
max_epochs=self._cfg.max_epochs,
accumulate_grad_batches=self.trainer.accumulate_grad_batches,
limit_train_batches=self.trainer.limit_train_batches,
num_workers=get_num_workers(self.trainer),
num_samples=len(self._train_dl.dataset),
batch_size=get_batch_size(self._train_dl),
drop_last=self._train_dl.drop_last,
)
@staticmethod
def get_warmup_steps(max_steps, warmup_steps, warmup_ratio):
if warmup_steps is not None and warmup_ratio is not None:
raise ValueError(f'Either use warmup_steps or warmup_ratio for scheduler')
if warmup_steps is not None:
return warmup_steps
if warmup_ratio is not None:
return warmup_ratio * max_steps
raise ValueError(f'Specify warmup_steps or warmup_ratio for scheduler')
def configure_optimizers(self):
optim_config = self._cfg.optim.copy()
OmegaConf.set_struct(optim_config, False)
sched_config = optim_config.pop("sched", None)
OmegaConf.set_struct(optim_config, True)
# Backward compatibility
if sched_config is None and 'sched' in self._cfg:
sched_config = self._cfg.sched
optim_g = instantiate(
optim_config,
params=self.generator.parameters(),
)
optim_d = instantiate(
optim_config,
params=itertools.chain(self.mrd.parameters(), self.mpd.parameters()),
)
if sched_config is not None:
max_steps = self._cfg.get("max_steps", None)
if max_steps is None or max_steps < 0:
max_steps = self._get_max_steps()
warmup_steps = UnivNetModel.get_warmup_steps(
max_steps=max_steps,
warmup_steps=sched_config.get("warmup_steps", None),
warmup_ratio=sched_config.get("warmup_ratio", None),
)
OmegaConf.set_struct(sched_config, False)
sched_config["max_steps"] = max_steps
sched_config["warmup_steps"] = warmup_steps
sched_config.pop("warmup_ratio", None)
OmegaConf.set_struct(sched_config, True)
scheduler_g = prepare_lr_scheduler(
optimizer=optim_g, scheduler_config=sched_config, train_dataloader=self._train_dl
)
scheduler_d = prepare_lr_scheduler(
optimizer=optim_d, scheduler_config=sched_config, train_dataloader=self._train_dl
)
return [optim_g, optim_d], [scheduler_g, scheduler_d]
else:
return [optim_g, optim_d]
@typecheck()
def forward(self, *, spec):
"""
Runs the generator, for inputs and outputs see input_types, and output_types
"""
return self.generator(x=spec)
@typecheck(
input_types={"spec": NeuralType(('B', 'C', 'T'), MelSpectrogramType())},
output_types={"audio": NeuralType(('B', 'T'), AudioSignal())},
)
def convert_spectrogram_to_audio(self, spec: 'torch.tensor') -> 'torch.tensor':
return self(spec=spec).squeeze(1)
def training_step(self, batch, batch_idx):
if self.input_as_mel:
# Pre-computed spectrograms will be used as input
audio, audio_len, audio_mel = batch
else:
audio, audio_len = batch
audio_mel, _ = self.audio_to_melspec_precessor(audio, audio_len)
audio = audio.unsqueeze(1)
audio_pred = self.generator(x=audio_mel)
audio_pred_mel, _ = self.trg_melspec_fn(audio_pred.squeeze(1), audio_len)
optim_g, optim_d = self.optimizers()
# Train discriminator
optim_d.zero_grad()
mpd_score_real, mpd_score_gen, _, _ = self.mpd(y=audio, y_hat=audio_pred.detach())
loss_disc_mpd, _, _ = self.discriminator_loss(
disc_real_outputs=mpd_score_real, disc_generated_outputs=mpd_score_gen
)
mrd_score_real, mrd_score_gen, _, _ = self.mrd(y=audio, y_hat=audio_pred.detach())
loss_disc_mrd, _, _ = self.discriminator_loss(
disc_real_outputs=mrd_score_real, disc_generated_outputs=mrd_score_gen
)
loss_d = loss_disc_mrd + loss_disc_mpd
self.manual_backward(loss_d)
optim_d.step()
# Train generator
optim_g.zero_grad()
loss_sc, loss_mag = self.mrstft_loss(x=audio_pred.squeeze(1), y=audio.squeeze(1), input_lengths=audio_len)
loss_sc = torch.stack(loss_sc).mean()
loss_mag = torch.stack(loss_mag).mean()
loss_mrstft = (loss_sc + loss_mag) * self.stft_lamb
_, mpd_score_gen, _, _ = self.mpd(y=audio, y_hat=audio_pred)
_, mrd_score_gen, _, _ = self.mrd(y=audio, y_hat=audio_pred)
loss_gen_mpd, _ = self.generator_loss(disc_outputs=mpd_score_gen)
loss_gen_mrd, _ = self.generator_loss(disc_outputs=mrd_score_gen)
loss_g = loss_gen_mrd + loss_gen_mpd + loss_mrstft
self.manual_backward(loss_g)
optim_g.step()
metrics = {
"g_loss_sc": loss_sc,
"g_loss_mag": loss_mag,
"g_loss_mrstft": loss_mrstft,
"g_loss_gen_mpd": loss_gen_mpd,
"g_loss_gen_mrd": loss_gen_mrd,
"g_loss": loss_g,
"d_loss_mpd": loss_disc_mpd,
"d_loss_mrd": loss_disc_mrd,
"d_loss": loss_d,
"global_step": self.global_step,
"lr": optim_g.param_groups[0]['lr'],
}
self.log_dict(metrics, on_step=True, sync_dist=True)
self.log("g_mrstft_loss", loss_mrstft, prog_bar=True, logger=False, sync_dist=True)
def validation_step(self, batch, batch_idx):
if self.input_as_mel:
audio, audio_len, audio_mel = batch
audio_mel_len = [audio_mel.shape[1]] * audio_mel.shape[0]
else:
audio, audio_len = batch
audio_mel, audio_mel_len = self.audio_to_melspec_precessor(audio, audio_len)
audio_pred = self(spec=audio_mel)
# Perform bias denoising
pred_denoised = self._bias_denoise(audio_pred, audio_mel).squeeze(1)
pred_denoised_mel, _ = self.audio_to_melspec_precessor(pred_denoised, audio_len)
if self.input_as_mel:
gt_mel, gt_mel_len = self.audio_to_melspec_precessor(audio, audio_len)
audio_pred_mel, _ = self.audio_to_melspec_precessor(audio_pred.squeeze(1), audio_len)
loss_mel = F.l1_loss(audio_mel, audio_pred_mel)
self.log_dict({"val_loss": loss_mel}, on_epoch=True, sync_dist=True)
# Plot audio once per epoch
if batch_idx == 0 and isinstance(self.logger, WandbLogger) and HAVE_WANDB:
clips = []
specs = []
for i in range(min(5, audio.shape[0])):
clips += [
wandb.Audio(
audio[i, : audio_len[i]].data.cpu().numpy(),
caption=f"real audio {i}",
sample_rate=self.sample_rate,
),
wandb.Audio(
audio_pred[i, 0, : audio_len[i]].data.cpu().numpy().astype('float32'),
caption=f"generated audio {i}",
sample_rate=self.sample_rate,
),
wandb.Audio(
pred_denoised[i, : audio_len[i]].data.cpu().numpy(),
caption=f"denoised audio {i}",
sample_rate=self.sample_rate,
),
]
specs += [
wandb.Image(
plot_spectrogram_to_numpy(audio_mel[i, :, : audio_mel_len[i]].data.cpu().numpy()),
caption=f"input mel {i}",
),
wandb.Image(
plot_spectrogram_to_numpy(audio_pred_mel[i, :, : audio_mel_len[i]].data.cpu().numpy()),
caption=f"output mel {i}",
),
wandb.Image(
plot_spectrogram_to_numpy(pred_denoised_mel[i, :, : audio_mel_len[i]].data.cpu().numpy()),
caption=f"denoised mel {i}",
),
]
if self.input_as_mel:
specs += [
wandb.Image(
plot_spectrogram_to_numpy(gt_mel[i, :, : audio_mel_len[i]].data.cpu().numpy()),
caption=f"gt mel {i}",
),
]
self.logger.experiment.log({"audio": clips, "specs": specs})
def _bias_denoise(self, audio, mel):
def stft(x):
comp = torch.stft(x.squeeze(1), n_fft=1024, hop_length=256, win_length=1024, return_complex=True)
comp = torch.view_as_real(comp)
real, imag = comp[..., 0], comp[..., 1]
mags = torch.sqrt(real**2 + imag**2)
phase = torch.atan2(imag, real)
return mags, phase
def istft(mags, phase):
comp = torch.stack([mags * torch.cos(phase), mags * torch.sin(phase)], dim=-1)
x = torch.istft(torch.view_as_complex(comp), n_fft=1024, hop_length=256, win_length=1024)
return x
# Create bias tensor
if self.stft_bias is None or self.stft_bias.shape[0] != audio.shape[0]:
audio_bias = self(spec=torch.zeros_like(mel, device=mel.device))
self.stft_bias, _ = stft(audio_bias)
self.stft_bias = self.stft_bias[:, :, 0][:, :, None]
audio_mags, audio_phase = stft(audio)
audio_mags = audio_mags - self.cfg.get("denoise_strength", 0.0025) * self.stft_bias
audio_mags = torch.clamp(audio_mags, 0.0)
audio_denoised = istft(audio_mags, audio_phase).unsqueeze(1)
return audio_denoised
def __setup_dataloader_from_config(self, cfg, shuffle_should_be: bool = True, name: str = "train"):
if "dataset" not in cfg or not isinstance(cfg.dataset, DictConfig):
raise ValueError(f"No dataset for {name}")
if "dataloader_params" not in cfg or not isinstance(cfg.dataloader_params, DictConfig):
raise ValueError(f"No dataloder_params for {name}")
if shuffle_should_be:
if 'shuffle' not in cfg.dataloader_params:
logging.warning(
f"Shuffle should be set to True for {self}'s {name} dataloader but was not found in its "
"config. Manually setting to True"
)
with open_dict(cfg["dataloader_params"]):
cfg.dataloader_params.shuffle = True
elif not cfg.dataloader_params.shuffle:
logging.error(f"The {name} dataloader for {self} has shuffle set to False!!!")
elif not shuffle_should_be and cfg.dataloader_params.shuffle:
logging.error(f"The {name} dataloader for {self} has shuffle set to True!!!")
dataset = instantiate(cfg.dataset)
return torch.utils.data.DataLoader(dataset, collate_fn=dataset.collate_fn, **cfg.dataloader_params)
def setup_training_data(self, cfg):
self._train_dl = self.__setup_dataloader_from_config(cfg)
def setup_validation_data(self, cfg):
self._validation_dl = self.__setup_dataloader_from_config(cfg, shuffle_should_be=False, name="validation")
def setup_test_data(self, cfg):
pass
@classmethod
def list_available_models(cls) -> 'Optional[Dict[str, str]]':
list_of_models = []
model = PretrainedModelInfo(
pretrained_model_name="tts_en_lj_univnet",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_lj_univnet/versions/1.7.0/files/tts_en_lj_univnet.nemo",
description="This model is trained on LJSpeech sampled at 22050Hz, and has been tested on generating female English voices with an American accent.",
class_=cls,
)
list_of_models.append(model)
model = PretrainedModelInfo(
pretrained_model_name="tts_en_libritts_univnet",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_libritts_univnet/versions/1.7.0/files/tts_en_libritts_multispeaker_univnet.nemo",
description="This model is trained on all LibriTTS training data (train-clean-100, train-clean-360, and train-other-500) sampled at 22050Hz, and has been tested on generating English voices.",
class_=cls,
)
list_of_models.append(model)
return list_of_models
# Methods for model exportability
def _prepare_for_export(self, **kwargs):
if self.generator is not None:
try:
self.generator.remove_weight_norm()
except ValueError:
return
@property
def input_types(self):
return {
"spec": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
}
@property
def output_types(self):
return {
"audio": NeuralType(('B', 'S', 'T'), AudioSignal(self.sample_rate)),
}
def input_example(self, max_batch=1, max_dim=256):
"""
Generates input examples for tracing etc.
Returns:
A tuple of input examples.
"""
par = next(self.parameters())
mel = torch.randn((max_batch, self.cfg['preprocessor']['nfilt'], max_dim), device=par.device, dtype=par.dtype)
return ({'spec': mel},)
def forward_for_export(self, spec):
"""
Runs the generator, for inputs and outputs see input_types, and output_types
"""
return self.generator(x=spec)
|