Spaces:
Runtime error
Runtime error
File size: 16,363 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import omegaconf
import torch
from hydra.utils import instantiate
from lightning.pytorch import Trainer
from lightning.pytorch.loggers import WandbLogger
from omegaconf import DictConfig, OmegaConf
from torch.cuda.amp import autocast
from torch.nn import functional as F
from nemo.collections.tts.data.dataset import DistributedBucketSampler
from nemo.collections.tts.losses.vits_losses import DiscriminatorLoss, FeatureMatchingLoss, GeneratorLoss, KlLoss
from nemo.collections.tts.models.base import TextToWaveform
from nemo.collections.tts.modules.vits_modules import MultiPeriodDiscriminator
from nemo.collections.tts.parts.utils.helpers import (
clip_grad_value_,
g2p_backward_compatible_support,
plot_spectrogram_to_numpy,
slice_segments,
)
from nemo.collections.tts.torch.tts_data_types import SpeakerID
from nemo.core.classes.common import PretrainedModelInfo, typecheck
from nemo.core.neural_types.elements import AudioSignal, FloatType, Index, IntType, TokenIndex
from nemo.core.neural_types.neural_type import NeuralType
from nemo.core.optim.lr_scheduler import CosineAnnealing
from nemo.utils import logging, model_utils
from nemo.utils.decorators.experimental import experimental
HAVE_WANDB = True
try:
import wandb
except ModuleNotFoundError:
HAVE_WANDB = False
@experimental
class VitsModel(TextToWaveform):
def __init__(self, cfg: DictConfig, trainer: 'Trainer' = None):
# Convert to Hydra 1.0 compatible DictConfig
cfg = model_utils.convert_model_config_to_dict_config(cfg)
cfg = model_utils.maybe_update_config_version(cfg)
# setup normalizer
self.normalizer = None
self.text_normalizer_call = None
self.text_normalizer_call_kwargs = {}
self._setup_normalizer(cfg)
# setup tokenizer
self.tokenizer = None
self._setup_tokenizer(cfg)
assert self.tokenizer is not None
num_tokens = len(self.tokenizer.tokens)
self.tokenizer_pad = self.tokenizer.pad
super().__init__(cfg=cfg, trainer=trainer)
self.audio_to_melspec_processor = instantiate(cfg.preprocessor, highfreq=cfg.train_ds.dataset.highfreq)
self.feat_matching_loss = FeatureMatchingLoss()
self.disc_loss = DiscriminatorLoss()
self.gen_loss = GeneratorLoss()
self.kl_loss = KlLoss()
self.net_g = instantiate(
cfg.synthesizer,
n_vocab=num_tokens,
spec_channels=cfg.n_fft // 2 + 1,
segment_size=cfg.segment_size // cfg.n_window_stride,
padding_idx=self.tokenizer_pad,
)
self.net_d = MultiPeriodDiscriminator(cfg.use_spectral_norm)
self.automatic_optimization = False
def _setup_tokenizer(self, cfg):
text_tokenizer_kwargs = {}
if "g2p" in cfg.text_tokenizer and cfg.text_tokenizer.g2p is not None:
# for backward compatibility
if (
self._is_model_being_restored()
and (cfg.text_tokenizer.g2p.get('_target_', None) is not None)
and cfg.text_tokenizer.g2p["_target_"].startswith("nemo_text_processing.g2p")
):
cfg.text_tokenizer.g2p["_target_"] = g2p_backward_compatible_support(
cfg.text_tokenizer.g2p["_target_"]
)
g2p_kwargs = {}
if "phoneme_dict" in cfg.text_tokenizer.g2p:
g2p_kwargs["phoneme_dict"] = self.register_artifact(
'text_tokenizer.g2p.phoneme_dict',
cfg.text_tokenizer.g2p.phoneme_dict,
)
if "heteronyms" in cfg.text_tokenizer.g2p:
g2p_kwargs["heteronyms"] = self.register_artifact(
'text_tokenizer.g2p.heteronyms',
cfg.text_tokenizer.g2p.heteronyms,
)
text_tokenizer_kwargs["g2p"] = instantiate(cfg.text_tokenizer.g2p, **g2p_kwargs)
self.tokenizer = instantiate(cfg.text_tokenizer, **text_tokenizer_kwargs)
def parse(self, text: str, normalize=True) -> torch.tensor:
if self.training:
logging.warning("parse() is meant to be called in eval mode.")
if normalize and self.text_normalizer_call is not None:
text = self.text_normalizer_call(text, **self.text_normalizer_call_kwargs)
eval_phon_mode = contextlib.nullcontext()
if hasattr(self.tokenizer, "set_phone_prob"):
eval_phon_mode = self.tokenizer.set_phone_prob(prob=1.0)
with eval_phon_mode:
tokens = self.tokenizer.encode(text)
return torch.tensor(tokens).long().unsqueeze(0).to(self.device)
def configure_optimizers(self):
optim_config = self._cfg.optim.copy()
OmegaConf.set_struct(optim_config, False)
sched_config = optim_config.pop("sched", None)
OmegaConf.set_struct(optim_config, True)
optim_g = instantiate(
optim_config,
params=self.net_g.parameters(),
)
optim_d = instantiate(
optim_config,
params=self.net_d.parameters(),
)
if sched_config is not None:
if sched_config.name == 'ExponentialLR':
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=sched_config.lr_decay)
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=sched_config.lr_decay)
elif sched_config.name == 'CosineAnnealing':
scheduler_g = CosineAnnealing(
optimizer=optim_g,
max_steps=sched_config.max_steps,
min_lr=sched_config.min_lr,
)
scheduler_d = CosineAnnealing(
optimizer=optim_d,
max_steps=sched_config.max_steps,
min_lr=sched_config.min_lr,
)
else:
raise ValueError("Unknown optimizer.")
scheduler_g_dict = {'scheduler': scheduler_g, 'interval': 'step'}
scheduler_d_dict = {'scheduler': scheduler_d, 'interval': 'step'}
return [optim_g, optim_d], [scheduler_g_dict, scheduler_d_dict]
else:
return [optim_g, optim_d]
# for inference
@typecheck(
input_types={
"tokens": NeuralType(('B', 'T_text'), TokenIndex()),
"speakers": NeuralType(('B',), Index(), optional=True),
"noise_scale": NeuralType(('B',), FloatType(), optional=True),
"length_scale": NeuralType(('B',), FloatType(), optional=True),
"noise_scale_w": NeuralType(('B',), FloatType(), optional=True),
"max_len": NeuralType(('B',), IntType(), optional=True),
}
)
def forward(self, tokens, speakers=None, noise_scale=1, length_scale=1, noise_scale_w=1.0, max_len=1000):
text_len = torch.tensor([tokens.size(-1)]).to(int).to(tokens.device)
audio_pred, attn, y_mask, (z, z_p, m_p, logs_p) = self.net_g.infer(
tokens,
text_len,
speakers=speakers,
noise_scale=noise_scale,
length_scale=length_scale,
noise_scale_w=noise_scale_w,
max_len=max_len,
)
return audio_pred, attn, y_mask, (z, z_p, m_p, logs_p)
def training_step(self, batch, batch_idx):
speakers = None
if SpeakerID in self._train_dl.dataset.sup_data_types_set:
(audio, audio_len, text, text_len, speakers) = batch
else:
(audio, audio_len, text, text_len) = batch
spec, spec_lengths = self.audio_to_melspec_processor(audio, audio_len, linear_spec=True)
with autocast(enabled=True):
audio_pred, l_length, attn, ids_slice, text_mask, z_mask, (z, z_p, m_p, logs_p, m_q, logs_q) = self.net_g(
text, text_len, spec, spec_lengths, speakers
)
audio_pred = audio_pred.float()
audio_pred_mel, _ = self.audio_to_melspec_processor(audio_pred.squeeze(1), audio_len, linear_spec=False)
audio = slice_segments(audio.unsqueeze(1), ids_slice * self.cfg.n_window_stride, self._cfg.segment_size)
audio_mel, _ = self.audio_to_melspec_processor(audio.squeeze(1), audio_len, linear_spec=False)
with autocast(enabled=True):
y_d_hat_r, y_d_hat_g, _, _ = self.net_d(audio, audio_pred.detach())
with autocast(enabled=False):
loss_disc, losses_disc_r, losses_disc_g = self.disc_loss(
disc_real_outputs=y_d_hat_r, disc_generated_outputs=y_d_hat_g
)
loss_disc_all = loss_disc
# get optimizers
optim_g, optim_d = self.optimizers()
# train discriminator
optim_d.zero_grad()
self.manual_backward(loss_disc_all)
norm_d = clip_grad_value_(self.net_d.parameters(), None)
optim_d.step()
with autocast(enabled=True):
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = self.net_d(audio, audio_pred)
# Generator
with autocast(enabled=False):
loss_dur = torch.sum(l_length.float())
loss_mel = F.l1_loss(audio_mel, audio_pred_mel) * self._cfg.c_mel
loss_kl = self.kl_loss(z_p=z_p, logs_q=logs_q, m_p=m_p, logs_p=logs_p, z_mask=z_mask) * self._cfg.c_kl
loss_fm = self.feat_matching_loss(fmap_r=fmap_r, fmap_g=fmap_g)
loss_gen, losses_gen = self.gen_loss(disc_outputs=y_d_hat_g)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
# train generator
optim_g.zero_grad()
self.manual_backward(loss_gen_all)
norm_g = clip_grad_value_(self.net_g.parameters(), None)
optim_g.step()
schedulers = self.lr_schedulers()
if schedulers is not None:
sch1, sch2 = schedulers
if (
self.trainer.is_last_batch
and isinstance(sch1, torch.optim.lr_scheduler.ExponentialLR)
or isinstance(sch1, CosineAnnealing)
):
sch1.step()
sch2.step()
metrics = {
"loss_gen": loss_gen,
"loss_fm": loss_fm,
"loss_mel": loss_mel,
"loss_dur": loss_dur,
"loss_kl": loss_kl,
"loss_gen_all": loss_gen_all,
"loss_disc_all": loss_disc_all,
"grad_gen": norm_g,
"grad_disc": norm_d,
}
for i, v in enumerate(losses_gen):
metrics[f"loss_gen_i_{i}"] = v
for i, v in enumerate(losses_disc_r):
metrics[f"loss_disc_r_{i}"] = v
for i, v in enumerate(losses_disc_g):
metrics[f"loss_disc_g_{i}"] = v
self.log_dict(metrics, on_step=True, sync_dist=True)
def validation_step(self, batch, batch_idx):
speakers = None
if self.cfg.n_speakers > 1:
(audio, audio_len, text, text_len, speakers) = batch
else:
(audio, audio_len, text, text_len) = batch
audio_pred, _, mask, *_ = self.net_g.infer(text, text_len, speakers, max_len=1000)
audio_pred = audio_pred.squeeze()
audio_pred_len = mask.sum([1, 2]).long() * self._cfg.validation_ds.dataset.hop_length
mel, mel_lengths = self.audio_to_melspec_processor(audio, audio_len)
audio_pred_mel, audio_pred_mel_len = self.audio_to_melspec_processor(audio_pred, audio_pred_len)
# plot audio once per epoch
if batch_idx == 0 and isinstance(self.logger, WandbLogger) and HAVE_WANDB:
logger = self.logger.experiment
specs = []
audios = []
specs += [
wandb.Image(
plot_spectrogram_to_numpy(mel[0, :, : mel_lengths[0]].data.cpu().numpy()),
caption=f"val_mel_target",
),
wandb.Image(
plot_spectrogram_to_numpy(audio_pred_mel[0, :, : audio_pred_mel_len[0]].data.cpu().numpy()),
caption=f"val_mel_predicted",
),
]
audios += [
wandb.Audio(
audio[0, : audio_len[0]].data.cpu().to(torch.float).numpy(),
caption=f"val_wav_target",
sample_rate=self._cfg.sample_rate,
),
wandb.Audio(
audio_pred[0, : audio_pred_len[0]].data.cpu().to(torch.float).numpy(),
caption=f"val_wav_predicted",
sample_rate=self._cfg.sample_rate,
),
]
logger.log({"specs": specs, "audios": audios})
def _loader(self, cfg):
try:
_ = cfg['dataset']['manifest_filepath']
except omegaconf.errors.MissingMandatoryValue:
logging.warning("manifest_filepath was skipped. No dataset for this model.")
return None
dataset = instantiate(
cfg.dataset,
text_normalizer=self.normalizer,
text_normalizer_call_kwargs=self.text_normalizer_call_kwargs,
text_tokenizer=self.tokenizer,
)
return torch.utils.data.DataLoader( # noqa
dataset=dataset,
collate_fn=dataset.collate_fn,
**cfg.dataloader_params,
)
def train_dataloader(self):
# default used by the Trainer
dataset = instantiate(
self.cfg.train_ds.dataset,
text_normalizer=self.normalizer,
text_normalizer_call_kwargs=self.text_normalizer_call_kwargs,
text_tokenizer=self.tokenizer,
)
train_sampler = DistributedBucketSampler(dataset, **self.cfg.train_ds.batch_sampler)
dataloader = torch.utils.data.DataLoader(
dataset,
collate_fn=dataset.collate_fn,
batch_sampler=train_sampler,
**self.cfg.train_ds.dataloader_params,
)
return dataloader
def setup_training_data(self, cfg):
self._train_dl = self._loader(cfg)
def setup_validation_data(self, cfg):
self._validation_dl = self._loader(cfg)
def setup_test_data(self, cfg):
"""Omitted."""
pass
@classmethod
def list_available_models(cls) -> 'List[PretrainedModelInfo]':
list_of_models = []
model = PretrainedModelInfo(
pretrained_model_name="tts_en_lj_vits",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_lj_vits/versions/1.13.0/files/vits_ljspeech_fp16_full.nemo",
description="This model is trained on LJSpeech audio sampled at 22050Hz. This model has been tested on generating female English "
"voices with an American accent.",
class_=cls,
)
list_of_models.append(model)
model = PretrainedModelInfo(
pretrained_model_name="tts_en_hifitts_vits",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_hifitts_vits/versions/r1.15.0/files/vits_en_hifitts.nemo",
description="This model is trained on HiFITTS sampled at 44100Hz with and can be used to generate male and female English voices with an American accent.",
class_=cls,
)
list_of_models.append(model)
return list_of_models
@typecheck(
input_types={
"tokens": NeuralType(('B', 'T_text'), TokenIndex(), optional=True),
},
output_types={"audio": NeuralType(('B', 'T_audio'), AudioSignal())},
)
def convert_text_to_waveform(self, *, tokens, speakers=None):
audio = self(tokens=tokens, speakers=speakers)[0].squeeze(1)
return audio
|