File size: 16,363 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import contextlib

import omegaconf
import torch
from hydra.utils import instantiate
from lightning.pytorch import Trainer
from lightning.pytorch.loggers import WandbLogger
from omegaconf import DictConfig, OmegaConf
from torch.cuda.amp import autocast
from torch.nn import functional as F

from nemo.collections.tts.data.dataset import DistributedBucketSampler
from nemo.collections.tts.losses.vits_losses import DiscriminatorLoss, FeatureMatchingLoss, GeneratorLoss, KlLoss
from nemo.collections.tts.models.base import TextToWaveform
from nemo.collections.tts.modules.vits_modules import MultiPeriodDiscriminator
from nemo.collections.tts.parts.utils.helpers import (
    clip_grad_value_,
    g2p_backward_compatible_support,
    plot_spectrogram_to_numpy,
    slice_segments,
)
from nemo.collections.tts.torch.tts_data_types import SpeakerID
from nemo.core.classes.common import PretrainedModelInfo, typecheck
from nemo.core.neural_types.elements import AudioSignal, FloatType, Index, IntType, TokenIndex
from nemo.core.neural_types.neural_type import NeuralType
from nemo.core.optim.lr_scheduler import CosineAnnealing
from nemo.utils import logging, model_utils
from nemo.utils.decorators.experimental import experimental

HAVE_WANDB = True
try:
    import wandb
except ModuleNotFoundError:
    HAVE_WANDB = False


@experimental
class VitsModel(TextToWaveform):
    def __init__(self, cfg: DictConfig, trainer: 'Trainer' = None):
        # Convert to Hydra 1.0 compatible DictConfig

        cfg = model_utils.convert_model_config_to_dict_config(cfg)
        cfg = model_utils.maybe_update_config_version(cfg)

        # setup normalizer
        self.normalizer = None
        self.text_normalizer_call = None
        self.text_normalizer_call_kwargs = {}
        self._setup_normalizer(cfg)

        # setup tokenizer
        self.tokenizer = None
        self._setup_tokenizer(cfg)
        assert self.tokenizer is not None

        num_tokens = len(self.tokenizer.tokens)
        self.tokenizer_pad = self.tokenizer.pad

        super().__init__(cfg=cfg, trainer=trainer)

        self.audio_to_melspec_processor = instantiate(cfg.preprocessor, highfreq=cfg.train_ds.dataset.highfreq)

        self.feat_matching_loss = FeatureMatchingLoss()
        self.disc_loss = DiscriminatorLoss()
        self.gen_loss = GeneratorLoss()
        self.kl_loss = KlLoss()

        self.net_g = instantiate(
            cfg.synthesizer,
            n_vocab=num_tokens,
            spec_channels=cfg.n_fft // 2 + 1,
            segment_size=cfg.segment_size // cfg.n_window_stride,
            padding_idx=self.tokenizer_pad,
        )

        self.net_d = MultiPeriodDiscriminator(cfg.use_spectral_norm)

        self.automatic_optimization = False

    def _setup_tokenizer(self, cfg):
        text_tokenizer_kwargs = {}
        if "g2p" in cfg.text_tokenizer and cfg.text_tokenizer.g2p is not None:
            # for backward compatibility
            if (
                self._is_model_being_restored()
                and (cfg.text_tokenizer.g2p.get('_target_', None) is not None)
                and cfg.text_tokenizer.g2p["_target_"].startswith("nemo_text_processing.g2p")
            ):
                cfg.text_tokenizer.g2p["_target_"] = g2p_backward_compatible_support(
                    cfg.text_tokenizer.g2p["_target_"]
                )

            g2p_kwargs = {}

            if "phoneme_dict" in cfg.text_tokenizer.g2p:
                g2p_kwargs["phoneme_dict"] = self.register_artifact(
                    'text_tokenizer.g2p.phoneme_dict',
                    cfg.text_tokenizer.g2p.phoneme_dict,
                )

            if "heteronyms" in cfg.text_tokenizer.g2p:
                g2p_kwargs["heteronyms"] = self.register_artifact(
                    'text_tokenizer.g2p.heteronyms',
                    cfg.text_tokenizer.g2p.heteronyms,
                )

            text_tokenizer_kwargs["g2p"] = instantiate(cfg.text_tokenizer.g2p, **g2p_kwargs)

        self.tokenizer = instantiate(cfg.text_tokenizer, **text_tokenizer_kwargs)

    def parse(self, text: str, normalize=True) -> torch.tensor:
        if self.training:
            logging.warning("parse() is meant to be called in eval mode.")
        if normalize and self.text_normalizer_call is not None:
            text = self.text_normalizer_call(text, **self.text_normalizer_call_kwargs)

        eval_phon_mode = contextlib.nullcontext()
        if hasattr(self.tokenizer, "set_phone_prob"):
            eval_phon_mode = self.tokenizer.set_phone_prob(prob=1.0)

        with eval_phon_mode:
            tokens = self.tokenizer.encode(text)

        return torch.tensor(tokens).long().unsqueeze(0).to(self.device)

    def configure_optimizers(self):
        optim_config = self._cfg.optim.copy()
        OmegaConf.set_struct(optim_config, False)
        sched_config = optim_config.pop("sched", None)
        OmegaConf.set_struct(optim_config, True)

        optim_g = instantiate(
            optim_config,
            params=self.net_g.parameters(),
        )
        optim_d = instantiate(
            optim_config,
            params=self.net_d.parameters(),
        )

        if sched_config is not None:
            if sched_config.name == 'ExponentialLR':
                scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=sched_config.lr_decay)
                scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=sched_config.lr_decay)
            elif sched_config.name == 'CosineAnnealing':
                scheduler_g = CosineAnnealing(
                    optimizer=optim_g,
                    max_steps=sched_config.max_steps,
                    min_lr=sched_config.min_lr,
                )
                scheduler_d = CosineAnnealing(
                    optimizer=optim_d,
                    max_steps=sched_config.max_steps,
                    min_lr=sched_config.min_lr,
                )
            else:
                raise ValueError("Unknown optimizer.")

            scheduler_g_dict = {'scheduler': scheduler_g, 'interval': 'step'}
            scheduler_d_dict = {'scheduler': scheduler_d, 'interval': 'step'}
            return [optim_g, optim_d], [scheduler_g_dict, scheduler_d_dict]
        else:
            return [optim_g, optim_d]

    # for inference
    @typecheck(
        input_types={
            "tokens": NeuralType(('B', 'T_text'), TokenIndex()),
            "speakers": NeuralType(('B',), Index(), optional=True),
            "noise_scale": NeuralType(('B',), FloatType(), optional=True),
            "length_scale": NeuralType(('B',), FloatType(), optional=True),
            "noise_scale_w": NeuralType(('B',), FloatType(), optional=True),
            "max_len": NeuralType(('B',), IntType(), optional=True),
        }
    )
    def forward(self, tokens, speakers=None, noise_scale=1, length_scale=1, noise_scale_w=1.0, max_len=1000):
        text_len = torch.tensor([tokens.size(-1)]).to(int).to(tokens.device)
        audio_pred, attn, y_mask, (z, z_p, m_p, logs_p) = self.net_g.infer(
            tokens,
            text_len,
            speakers=speakers,
            noise_scale=noise_scale,
            length_scale=length_scale,
            noise_scale_w=noise_scale_w,
            max_len=max_len,
        )
        return audio_pred, attn, y_mask, (z, z_p, m_p, logs_p)

    def training_step(self, batch, batch_idx):
        speakers = None
        if SpeakerID in self._train_dl.dataset.sup_data_types_set:
            (audio, audio_len, text, text_len, speakers) = batch
        else:
            (audio, audio_len, text, text_len) = batch

        spec, spec_lengths = self.audio_to_melspec_processor(audio, audio_len, linear_spec=True)

        with autocast(enabled=True):
            audio_pred, l_length, attn, ids_slice, text_mask, z_mask, (z, z_p, m_p, logs_p, m_q, logs_q) = self.net_g(
                text, text_len, spec, spec_lengths, speakers
            )

        audio_pred = audio_pred.float()

        audio_pred_mel, _ = self.audio_to_melspec_processor(audio_pred.squeeze(1), audio_len, linear_spec=False)

        audio = slice_segments(audio.unsqueeze(1), ids_slice * self.cfg.n_window_stride, self._cfg.segment_size)
        audio_mel, _ = self.audio_to_melspec_processor(audio.squeeze(1), audio_len, linear_spec=False)

        with autocast(enabled=True):
            y_d_hat_r, y_d_hat_g, _, _ = self.net_d(audio, audio_pred.detach())

        with autocast(enabled=False):
            loss_disc, losses_disc_r, losses_disc_g = self.disc_loss(
                disc_real_outputs=y_d_hat_r, disc_generated_outputs=y_d_hat_g
            )
            loss_disc_all = loss_disc

        # get optimizers
        optim_g, optim_d = self.optimizers()

        # train discriminator
        optim_d.zero_grad()
        self.manual_backward(loss_disc_all)
        norm_d = clip_grad_value_(self.net_d.parameters(), None)
        optim_d.step()

        with autocast(enabled=True):
            y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = self.net_d(audio, audio_pred)
        # Generator
        with autocast(enabled=False):
            loss_dur = torch.sum(l_length.float())
            loss_mel = F.l1_loss(audio_mel, audio_pred_mel) * self._cfg.c_mel
            loss_kl = self.kl_loss(z_p=z_p, logs_q=logs_q, m_p=m_p, logs_p=logs_p, z_mask=z_mask) * self._cfg.c_kl
            loss_fm = self.feat_matching_loss(fmap_r=fmap_r, fmap_g=fmap_g)
            loss_gen, losses_gen = self.gen_loss(disc_outputs=y_d_hat_g)
            loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl

        # train generator
        optim_g.zero_grad()
        self.manual_backward(loss_gen_all)
        norm_g = clip_grad_value_(self.net_g.parameters(), None)
        optim_g.step()

        schedulers = self.lr_schedulers()
        if schedulers is not None:
            sch1, sch2 = schedulers
            if (
                self.trainer.is_last_batch
                and isinstance(sch1, torch.optim.lr_scheduler.ExponentialLR)
                or isinstance(sch1, CosineAnnealing)
            ):
                sch1.step()
                sch2.step()

        metrics = {
            "loss_gen": loss_gen,
            "loss_fm": loss_fm,
            "loss_mel": loss_mel,
            "loss_dur": loss_dur,
            "loss_kl": loss_kl,
            "loss_gen_all": loss_gen_all,
            "loss_disc_all": loss_disc_all,
            "grad_gen": norm_g,
            "grad_disc": norm_d,
        }

        for i, v in enumerate(losses_gen):
            metrics[f"loss_gen_i_{i}"] = v

        for i, v in enumerate(losses_disc_r):
            metrics[f"loss_disc_r_{i}"] = v

        for i, v in enumerate(losses_disc_g):
            metrics[f"loss_disc_g_{i}"] = v

        self.log_dict(metrics, on_step=True, sync_dist=True)

    def validation_step(self, batch, batch_idx):
        speakers = None
        if self.cfg.n_speakers > 1:
            (audio, audio_len, text, text_len, speakers) = batch
        else:
            (audio, audio_len, text, text_len) = batch

        audio_pred, _, mask, *_ = self.net_g.infer(text, text_len, speakers, max_len=1000)

        audio_pred = audio_pred.squeeze()
        audio_pred_len = mask.sum([1, 2]).long() * self._cfg.validation_ds.dataset.hop_length

        mel, mel_lengths = self.audio_to_melspec_processor(audio, audio_len)
        audio_pred_mel, audio_pred_mel_len = self.audio_to_melspec_processor(audio_pred, audio_pred_len)

        # plot audio once per epoch
        if batch_idx == 0 and isinstance(self.logger, WandbLogger) and HAVE_WANDB:
            logger = self.logger.experiment

            specs = []
            audios = []
            specs += [
                wandb.Image(
                    plot_spectrogram_to_numpy(mel[0, :, : mel_lengths[0]].data.cpu().numpy()),
                    caption=f"val_mel_target",
                ),
                wandb.Image(
                    plot_spectrogram_to_numpy(audio_pred_mel[0, :, : audio_pred_mel_len[0]].data.cpu().numpy()),
                    caption=f"val_mel_predicted",
                ),
            ]

            audios += [
                wandb.Audio(
                    audio[0, : audio_len[0]].data.cpu().to(torch.float).numpy(),
                    caption=f"val_wav_target",
                    sample_rate=self._cfg.sample_rate,
                ),
                wandb.Audio(
                    audio_pred[0, : audio_pred_len[0]].data.cpu().to(torch.float).numpy(),
                    caption=f"val_wav_predicted",
                    sample_rate=self._cfg.sample_rate,
                ),
            ]

            logger.log({"specs": specs, "audios": audios})

    def _loader(self, cfg):
        try:
            _ = cfg['dataset']['manifest_filepath']
        except omegaconf.errors.MissingMandatoryValue:
            logging.warning("manifest_filepath was skipped. No dataset for this model.")
            return None

        dataset = instantiate(
            cfg.dataset,
            text_normalizer=self.normalizer,
            text_normalizer_call_kwargs=self.text_normalizer_call_kwargs,
            text_tokenizer=self.tokenizer,
        )
        return torch.utils.data.DataLoader(  # noqa
            dataset=dataset,
            collate_fn=dataset.collate_fn,
            **cfg.dataloader_params,
        )

    def train_dataloader(self):
        # default used by the Trainer
        dataset = instantiate(
            self.cfg.train_ds.dataset,
            text_normalizer=self.normalizer,
            text_normalizer_call_kwargs=self.text_normalizer_call_kwargs,
            text_tokenizer=self.tokenizer,
        )

        train_sampler = DistributedBucketSampler(dataset, **self.cfg.train_ds.batch_sampler)

        dataloader = torch.utils.data.DataLoader(
            dataset,
            collate_fn=dataset.collate_fn,
            batch_sampler=train_sampler,
            **self.cfg.train_ds.dataloader_params,
        )
        return dataloader

    def setup_training_data(self, cfg):
        self._train_dl = self._loader(cfg)

    def setup_validation_data(self, cfg):
        self._validation_dl = self._loader(cfg)

    def setup_test_data(self, cfg):
        """Omitted."""
        pass

    @classmethod
    def list_available_models(cls) -> 'List[PretrainedModelInfo]':
        list_of_models = []
        model = PretrainedModelInfo(
            pretrained_model_name="tts_en_lj_vits",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_lj_vits/versions/1.13.0/files/vits_ljspeech_fp16_full.nemo",
            description="This model is trained on LJSpeech audio sampled at 22050Hz. This model has been tested on generating female English "
            "voices with an American accent.",
            class_=cls,
        )
        list_of_models.append(model)
        model = PretrainedModelInfo(
            pretrained_model_name="tts_en_hifitts_vits",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_hifitts_vits/versions/r1.15.0/files/vits_en_hifitts.nemo",
            description="This model is trained on HiFITTS sampled at 44100Hz with and can be used to generate male and female English voices with an American accent.",
            class_=cls,
        )
        list_of_models.append(model)
        return list_of_models

    @typecheck(
        input_types={
            "tokens": NeuralType(('B', 'T_text'), TokenIndex(), optional=True),
        },
        output_types={"audio": NeuralType(('B', 'T_audio'), AudioSignal())},
    )
    def convert_text_to_waveform(self, *, tokens, speakers=None):
        audio = self(tokens=tokens, speakers=speakers)[0].squeeze(1)
        return audio