Spaces:
Runtime error
Runtime error
File size: 28,036 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 |
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
import tarfile
import tempfile
from pathlib import Path
from time import time
from typing import List
import tensorrt as trt
import torch
import yaml
from omegaconf import OmegaConf
from PIL import Image
from tensorrt_llm._common import check_max_num_tokens
from tensorrt_llm.builder import BuildConfig, Builder
from tensorrt_llm.commands.build import build as build_trtllm
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import MLLaMAForCausalLM
from tensorrt_llm.plugin import PluginConfig
from transformers import AutoModel, AutoProcessor, MllamaForConditionalGeneration
from nemo.collections.multimodal.speech_llm.modules.perception_modules import AudioPerceptionModule
from nemo.core.classes.common import typecheck
from nemo.export.tensorrt_llm import TensorRTLLM
from nemo.export.trt_llm.nemo_ckpt_loader.nemo_file import load_nemo_model
from .converter import convert_mllama_nemo_to_hf
logger = trt.Logger(trt.Logger.INFO)
def build_trtllm_engine(
model_dir: str,
visual_checkpoint_path: str,
llm_checkpoint_path: str = None,
model_type: str = "neva",
llm_model_type: str = "llama",
tensor_parallelism_size: int = 1,
max_input_len: int = 256,
max_output_len: int = 256,
max_batch_size: int = 1,
max_multimodal_len: int = 1024,
dtype: str = "bfloat16",
use_lora_plugin: str = None,
lora_target_modules: List[str] = None,
max_lora_rank: int = 64,
lora_ckpt_list: List[str] = None,
):
"""Build TRTLLM engine by nemo export"""
trt_llm_exporter = TensorRTLLM(model_dir=model_dir, lora_ckpt_list=lora_ckpt_list, load_model=False)
trt_llm_exporter.export(
nemo_checkpoint_path=visual_checkpoint_path if llm_checkpoint_path is None else llm_checkpoint_path,
model_type=llm_model_type,
tensor_parallelism_size=tensor_parallelism_size,
max_input_len=max_input_len,
max_output_len=max_output_len,
max_seq_len=max_input_len + max_output_len,
max_batch_size=max_batch_size,
max_prompt_embedding_table_size=max_multimodal_len,
dtype=dtype,
load_model=False,
use_lora_plugin=use_lora_plugin,
lora_target_modules=lora_target_modules,
max_lora_rank=max_lora_rank,
use_mcore_path=False,
)
def build_mllama_trtllm_engine(
model_dir: str,
hf_model_path: str,
tensor_parallelism_size: int = 1,
max_input_len: int = 256,
max_output_len: int = 256,
max_batch_size: int = 1,
max_multimodal_len: int = 1024,
dtype: str = "bfloat16",
use_lora_plugin: str = None,
lora_target_modules: List[str] = None,
max_lora_rank: int = 64,
lora_ckpt_list: List[str] = None,
):
"""Build mllama TRTLLM engine from HF"""
if max_batch_size < 4:
print(
"TensorRT LLM may hit a runtime issue with batch size is smaller than 4 on some models." " Force set to 4"
)
max_batch_size = 4
plugin_config = PluginConfig()
plugin_config.gpt_attention_plugin = "auto"
plugin_config.gemm_plugin = "auto"
plugin_config.enable_paged_kv_cache(tokens_per_block=128)
plugin_config.remove_input_padding = True
plugin_config.use_paged_context_fmha = True
max_seq_len = max_input_len + max_output_len
max_num_tokens, opt_num_tokens = check_max_num_tokens(
max_num_tokens=None,
opt_num_tokens=None,
max_seq_len=max_seq_len,
max_batch_size=max_batch_size,
max_input_len=max_input_len,
max_beam_width=1,
remove_input_padding=True,
enable_context_fmha=plugin_config.context_fmha,
tokens_per_block=128,
multiple_profiles=False,
)
build_dict = {
'max_input_len': max_input_len,
'max_output_len': max_output_len,
'max_encoder_input_len': max_multimodal_len,
'max_batch_size': max_batch_size,
'max_beam_width': 1,
'max_seq_len': max_seq_len,
'max_num_tokens': max_num_tokens,
'opt_num_tokens': opt_num_tokens,
'strongly_typed': True,
'builder_opt': None,
}
build_config = BuildConfig.from_dict(build_dict, plugin_config=plugin_config)
for rank in range(tensor_parallelism_size):
mapping = Mapping(world_size=tensor_parallelism_size, rank=rank, tp_size=tensor_parallelism_size)
model = MLLaMAForCausalLM.from_hugging_face(
hf_model_path,
dtype,
mapping=mapping,
)
engine = build_trtllm(model, build_config)
engine.save(model_dir)
def export_visual_wrapper_onnx(
visual_wrapper, input, output_dir, input_names=['input'], dynamic_axes={'input': {0: 'batch'}}
):
"""Export visual wrapper to ONNX"""
logger.log(trt.Logger.INFO, "Exporting onnx")
os.makedirs(f'{output_dir}/onnx', exist_ok=True)
torch.onnx.export(
visual_wrapper,
input,
f'{output_dir}/onnx/visual_encoder.onnx',
opset_version=17,
input_names=input_names,
output_names=['output'],
dynamic_axes=dynamic_axes,
)
def export_perception_wrapper_onnx(
perception_wrapper,
input,
output_dir,
input_names=['processed_signal', 'processed_signal_length'],
output_names=['encoded', 'encoded_length'],
dynamic_axes={
'processed_signal': {0: 'batch', 2: 'time'},
'processed_signal_length': {0: 'batch'},
'encoded': {0: 'batch', 1: 'time'},
'encoded_length': {0: 'batch'},
},
):
"""Export perception wrapper to ONNX"""
logger.log(trt.Logger.INFO, "Exporting onnx")
os.makedirs(f'{output_dir}/onnx', exist_ok=True)
torch.onnx.export(
perception_wrapper,
input,
f'{output_dir}/onnx/perception_encoder.onnx',
opset_version=17,
input_names=input_names,
output_names=output_names,
dynamic_axes=dynamic_axes,
)
def build_trt_engine(
model_type,
input_sizes,
output_dir,
vision_max_batch_size,
dtype=torch.bfloat16,
image_size=None,
num_frames=None,
nemo_config=None,
part_name='visual_encoder',
):
"""Build TRT engine from onnx"""
onnx_file = '%s/onnx/%s.onnx' % (output_dir, part_name)
engine_file = '%s/%s.engine' % (output_dir, part_name)
config_file = '%s/%s' % (output_dir, "config.json")
nemo_config_file = '%s/%s' % (output_dir, "nemo_config.yaml")
with open(nemo_config_file, 'w') as f:
yaml.dump(nemo_config, f)
logger.log(trt.Logger.INFO, "Building TRT engine for %s" % part_name)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config_args = {"precision": str(dtype).split('.')[-1], "model_type": model_type}
if image_size is not None:
config_args["image_size"] = image_size
if num_frames is not None:
config_args["num_frames"] = num_frames
config_wrapper = Builder().create_builder_config(**config_args)
config = config_wrapper.trt_builder_config
parser = trt.OnnxParser(network, logger)
with open(onnx_file, 'rb') as model:
if not parser.parse(model.read(), os.path.abspath(onnx_file)):
logger.log(trt.Logger.ERROR, "Failed parsing %s" % onnx_file)
for error in range(parser.num_errors):
logger.log(trt.Logger.ERROR, parser.get_error(error))
logger.log(trt.Logger.INFO, "Succeeded parsing %s" % onnx_file)
# Delete onnx files since we don't need them now
shutil.rmtree(f'{output_dir}/onnx')
nBS = -1
nMinBS = 1
nOptBS = max(nMinBS, int(vision_max_batch_size / 2))
nMaxBS = vision_max_batch_size
inputT = network.get_input(0)
# input sizes can be a list of ints (e.g., [3, H, W]) when inputs are images,
# or a list of three int lists (e.g., [[1, 1, 2700], [1, 500, 2700], [1, 4096, 2700]]).
# or a list of three list of lists
# (e.g., [{input1: min_shape, input2: min_shape, }, \
# {input1: opt_shape, input2: opt_shape}, \
# {input1: max_shape, input2: max_shape}] )
assert isinstance(input_sizes, list), "input_sizes must be a list"
if isinstance(input_sizes[0], int):
logger.log(trt.Logger.INFO, f"Processed input sizes {input_sizes}")
inputT.shape = [nBS, *input_sizes]
min_size = opt_size = max_size = input_sizes
elif len(input_sizes) == 3 and isinstance(input_sizes[0], list):
min_size, opt_size, max_size = input_sizes
logger.log(trt.Logger.INFO, f"Processed min/opt/max input sizes {min_size}/{opt_size}/{max_size}")
elif len(input_sizes) == 3 and isinstance(input_sizes[0], dict):
logger.log(trt.Logger.INFO, f"Processed min/opt/max input sizes {input_sizes}")
else:
raise ValueError(f"invalid input sizes: {input_sizes}")
if isinstance(input_sizes[0], dict):
for i in range(network.num_inputs):
inputT = network.get_input(i)
input_name = inputT.name
min_size = input_sizes[0][input_name]
opt_size = input_sizes[1][input_name]
max_size = input_sizes[2][input_name]
logger.log(trt.Logger.INFO, f"{input_name} min/opt/max input sizes {min_size}/{opt_size}/{max_size}")
profile.set_shape(input_name, min_size, opt_size, max_size)
else:
profile.set_shape(inputT.name, [nMinBS, *min_size], [nOptBS, *opt_size], [nMaxBS, *max_size])
config.add_optimization_profile(profile)
t0 = time()
engine_string = builder.build_serialized_network(network, config)
t1 = time()
if engine_string is None:
raise RuntimeError("Failed building %s" % (engine_file))
else:
logger.log(trt.Logger.INFO, "Succeeded building %s in %d s" % (engine_file, t1 - t0))
with open(engine_file, 'wb') as f:
f.write(engine_string)
Builder.save_config(config_wrapper, config_file)
def build_neva_engine(
model_type: str,
model_dir: str,
visual_checkpoint_path: str,
vision_max_batch_size: int = 1,
):
"""Build neva visual engine"""
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
if os.path.isdir(visual_checkpoint_path):
# load untar checkpoint
config_path = os.path.join(visual_checkpoint_path, 'model_config.yaml')
with open(config_path, 'r') as f:
nemo_config = yaml.safe_load(f)
try:
weights_path = os.path.join(visual_checkpoint_path, 'model_weights.ckpt')
mp0_weights = torch.load(weights_path, map_location=device)
except FileNotFoundError:
weights_path = os.path.join(visual_checkpoint_path, 'mp_rank_00/model_weights.ckpt')
mp0_weights = torch.load(weights_path, map_location=device)
else:
# extract NeMo checkpoint
with tempfile.TemporaryDirectory() as temp:
temp_path = Path(temp)
mp0_weights, nemo_config, _ = load_nemo_model(visual_checkpoint_path, temp_path)
vision_config = nemo_config["mm_cfg"]["vision_encoder"]
class DownSampleBlock(torch.nn.Module):
# pylint: disable=C0115,C0116
def forward(self, x):
vit_embeds = x
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = self.flat_square(vit_embeds)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
return vit_embeds
def flat_square(self, x):
n, w, h, c = x.size()
if w % 2 == 1:
x = torch.cat([x, torch.zeros((n, 1, h, c), dtype=x.dtype).to(x.device)], dim=1).contiguous()
n, w, h, c = x.size()
if h % 2 == 1:
x = torch.cat([x, torch.zeros((n, w, 1, c), dtype=x.dtype).to(x.device)], dim=2).contiguous()
n, w, h, c = x.size()
x = x.view(n, w, int(h / 2), int(c * 2))
x = x.permute(0, 2, 1, 3).contiguous()
x = x.view(n, int(h / 2), int(w / 2), int(c * 4))
return x
class VisionEncoderWrapper(torch.nn.Module):
# pylint: disable=C0115,C0116
def __init__(self, encoder, connector):
super().__init__()
self.encoder = encoder
self.connector = connector
def forward(self, images):
vision_x = self.encoder(pixel_values=images, output_hidden_states=True)
vision_x = vision_x.hidden_states[-2]
vision_x = self.connector(vision_x)
return vision_x
encoder = AutoModel.from_pretrained(
vision_config["from_pretrained"],
torch_dtype=torch.bfloat16,
trust_remote_code=True,
attn_implementation='eager',
)
vision_encoder = encoder.vision_model
hf_config = encoder.config
dtype = hf_config.torch_dtype
# connector
if nemo_config["mm_cfg"]["mm_mlp_adapter_type"] == "mlp2x_gelu":
vision_connector = torch.nn.Sequential(
torch.nn.Linear(vision_config["hidden_size"], nemo_config["hidden_size"], bias=True),
torch.nn.GELU(),
torch.nn.Linear(nemo_config["hidden_size"], nemo_config["hidden_size"], bias=True),
).to(dtype=dtype)
key_prefix = "model.embedding.word_embeddings.adapter_layer.mm_projector_adapter.mm_projector"
for layer in range(0, 3, 2):
vision_connector[layer].load_state_dict(
{
'weight': mp0_weights[f"{key_prefix}.{layer}.weight"].to(dtype),
'bias': mp0_weights[f"{key_prefix}.{layer}.bias"].to(dtype),
}
)
elif nemo_config["mm_cfg"]["mm_mlp_adapter_type"] == "linear":
vision_connector = torch.nn.Linear(vision_config["hidden_size"], nemo_config["hidden_size"], bias=True)
key_prefix = "model.embedding.word_embeddings.adapter_layer.mm_projector_adapter.mm_projector"
vision_connector.load_state_dict(
{
'weight': mp0_weights[f"{key_prefix}.weight"].to(dtype),
'bias': mp0_weights[f"{key_prefix}.bias"].to(dtype),
}
)
elif nemo_config["mm_cfg"]["mm_mlp_adapter_type"] == "mlp_downsample":
vision_connector = torch.nn.Sequential(
DownSampleBlock(),
torch.nn.LayerNorm(vision_config["hidden_size"] * 4),
torch.nn.Linear(vision_config["hidden_size"] * 4, nemo_config["hidden_size"], bias=True),
torch.nn.GELU(),
torch.nn.Linear(nemo_config["hidden_size"], nemo_config["hidden_size"], bias=True),
).to(dtype=dtype)
key_prefix = "model.embedding.word_embeddings.adapter_layer.mm_projector_adapter.mm_projector"
for layer in [1, 2, 4]:
vision_connector[layer].load_state_dict(
{
'weight': mp0_weights[f"{key_prefix}.{layer}.weight"].to(dtype),
'bias': mp0_weights[f"{key_prefix}.{layer}.bias"].to(dtype),
}
)
else:
raise ValueError(f"Unknown projector type: {nemo_config['mm_cfg']['mm_mlp_adapter_type']}")
# export the whole wrapper
lita_num_frames = None
wrapper = VisionEncoderWrapper(vision_encoder, vision_connector).to(device, dtype)
if model_type == "lita" or model_type == "vila":
image_size = hf_config.image_size
if model_type == "lita":
lita_num_frames = nemo_config['mm_cfg']['lita']['sample_frames']
else:
image_size = hf_config.vision_config.image_size
if model_type == "vita":
lita_num_frames = nemo_config['mm_cfg']['lita']['sample_frames']
dummy_image = torch.empty(
1, 3, image_size, image_size, dtype=dtype, device=device
) # dummy image shape [B, C, H, W]
export_visual_wrapper_onnx(wrapper, dummy_image, model_dir)
build_trt_engine(
model_type,
[3, image_size, image_size],
model_dir,
vision_max_batch_size,
dtype,
image_size=image_size,
num_frames=lita_num_frames if model_type == "lita" or model_type == 'vita' else None,
nemo_config=nemo_config,
)
def build_video_neva_engine(
model_dir: str,
visual_checkpoint_path: str,
vision_max_batch_size: int = 1,
):
"""Build video neva visual engine"""
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
# extract NeMo checkpoint
with tarfile.open(visual_checkpoint_path) as tar:
nemo_config = yaml.safe_load(tar.extractfile("./model_config.yaml"))
try:
# trained without TP
mp0_weights = torch.load(tar.extractfile("./model_weights.ckpt"), map_location=device)
except KeyError:
# trained with TP
mp0_weights = torch.load(tar.extractfile("./mp_rank_00/model_weights.ckpt"), map_location=device)
vision_config = nemo_config["mm_cfg"]["vision_encoder"]
class VisionEncoderWrapper(torch.nn.Module):
# pylint: disable=C0115,C0116
def __init__(self, encoder, connector):
super().__init__()
self.encoder = encoder
self.connector = connector
def forward(self, images):
b, num_frames, c, h, w = images.shape
images = images.view(b * num_frames, c, h, w)
vision_x = self.encoder(pixel_values=images, output_hidden_states=True) # [(B num_frames), C, H, W]
vision_x = vision_x.hidden_states[-2]
vision_x = vision_x[:, 1:]
# reshape back to [B, num_frames, img_size, hidden_size]
vision_x = vision_x.view(b, num_frames, -1, vision_x.shape[-1])
vision_x = self.connector(vision_x)
return vision_x
encoder = AutoModel.from_pretrained(
vision_config["from_pretrained"],
torch_dtype=torch.bfloat16,
trust_remote_code=True,
attn_implementation='eager',
)
vision_encoder = encoder.vision_model
hf_config = encoder.config
dtype = hf_config.torch_dtype
# connector
assert nemo_config["mm_cfg"]["mm_mlp_adapter_type"] == "linear"
vision_connector = torch.nn.Linear(vision_config["hidden_size"], nemo_config["hidden_size"], bias=True)
key_prefix = "model.embedding.word_embeddings.adapter_layer.mm_projector_adapter.mm_projector"
vision_connector.load_state_dict(
{
'weight': mp0_weights[f"{key_prefix}.weight"].to(dtype),
'bias': mp0_weights[f"{key_prefix}.bias"].to(dtype),
}
)
# export the whole wrapper
wrapper = VisionEncoderWrapper(vision_encoder, vision_connector).to(device, dtype)
image_size = hf_config.vision_config.image_size
num_frames = nemo_config['data']['num_frames']
dummy_video = torch.empty(1, num_frames, 3, image_size, image_size, dtype=dtype, device=device) # dummy image
export_visual_wrapper_onnx(wrapper, dummy_video, model_dir)
build_trt_engine(
"video-neva",
[num_frames, 3, image_size, image_size], # [num_frames, 3, H, W]
model_dir,
vision_max_batch_size,
dtype,
image_size=image_size,
num_frames=num_frames,
)
def build_perception_engine(
model_dir: str,
perception_checkpoint_path: str,
model_type: str = "salm",
max_batch_size: int = 1,
):
"""Build perception engine"""
assert model_type == "salm", f"Invalid model type {model_type}"
def load_perception_model(perception_checkpoint_path):
weights = "model_weights.ckpt"
perception_state_dict = torch.load(os.path.join(perception_checkpoint_path, weights))
config = "model_config.yaml"
config = OmegaConf.load(os.path.join(perception_checkpoint_path, config))
perception = AudioPerceptionModule(cfg=config)
perception.load_state_dict(perception_state_dict)
perception.eval()
return perception
if not os.path.exists(model_dir):
os.makedirs(model_dir)
# load perception model
perception_model = load_perception_model(perception_checkpoint_path)
feature_extractor = perception_model.preprocessor
input_signal = torch.randn(1, 1000, dtype=torch.float32)
input_signal_length = torch.tensor([1000], dtype=torch.int32)
processed_signal, processed_signal_length = feature_extractor(
input_signal=input_signal, length=input_signal_length
)
processed_signal_length = processed_signal_length.to(torch.int32)
dump_path = model_dir + "/feature_extractor.ts" # dump the feature extractor as torchscript
feature_extractor.export(dump_path, (input_signal, input_signal_length))
class PerceptionWrapper(torch.nn.Module):
# pylint: disable=C0115,C0116
def __init__(self, encoder, modality_adapter, proj):
super().__init__()
self.encoder = encoder
self.modality_adapter = modality_adapter
self.proj = proj
@typecheck.disable_checks()
def forward(self, processed_signal, processed_signal_length):
encoded, encoded_len = self.encoder(audio_signal=processed_signal, length=processed_signal_length)
encoded, encoded_len = self.modality_adapter(audio_signal=encoded, length=encoded_len)
# b, c, t -> b, t, c
encoded = self.proj(encoded.transpose(1, 2))
encoded_len = encoded_len.to(torch.int32)
return encoded, encoded_len
perception = PerceptionWrapper(perception_model.encoder, perception_model.modality_adapter, perception_model.proj)
export_perception_wrapper_onnx(perception, (processed_signal, processed_signal_length), model_dir)
# export the onnx perception model to tensorrt engine
# 512 -> 5.12 sec, 3072 -> 30.72 sec
opt_batch_size = max(1, max_batch_size // 2)
shapes = [
{"processed_signal": [1, 80, 64], "processed_signal_length": [1]},
{"processed_signal": [opt_batch_size, 80, 512], "processed_signal_length": [opt_batch_size]},
{"processed_signal": [max_batch_size, 80, 3072], "processed_signal_length": [max_batch_size]},
]
build_trt_engine(
model_type,
shapes,
model_dir,
max_batch_size,
dtype=torch.float16,
nemo_config=None,
part_name='perception_encoder',
)
def build_mllama_visual_engine(
model_dir: str,
hf_model_path: str,
processor_name: str = "meta-llama/Llama-3.2-11B-Vision-Instruct",
vision_max_batch_size: int = 1,
):
"""Build mllama visual engine"""
hf_model = MllamaForConditionalGeneration.from_pretrained(hf_model_path, torch_dtype="auto", device_map="auto")
model_dtype = hf_model.dtype
class MLLaMAVisionWrapper(torch.nn.Module):
# pylint: disable=C0115,C0116
def __init__(self, vision_model, output_proj):
super().__init__()
self.vision_model = vision_model
self.output_proj = output_proj
def forward(self, pixel_values, aspect_ratio_ids, aspect_ratio_mask):
out = self.vision_model(pixel_values, aspect_ratio_ids, aspect_ratio_mask).last_hidden_state
out = self.output_proj(out)
return out
wrapper = MLLaMAVisionWrapper(hf_model.vision_model, hf_model.multi_modal_projector)
processor = AutoProcessor.from_pretrained(processor_name)
image = Image.new('RGB', [2048, 2688])
inputs = processor(images=image, return_tensors="pt").to(model_dtype)
export_visual_wrapper_onnx(
wrapper,
tuple([value for _, value in inputs.items()]),
model_dir,
input_names=[key for key in inputs],
dynamic_axes={key: {0: "batch"} for key in inputs},
)
shapes = [{k: list(v.shape) for k, v in inputs.items()}] * 3
shapes[2] = shapes[0].copy()
for k, v in shapes[2].items():
shapes[2][k] = [vision_max_batch_size] + v[1:]
build_trt_engine("mllama", shapes, model_dir, vision_max_batch_size, model_dtype)
def build_visual_engine(
model_dir: str,
visual_checkpoint_path: str,
model_type: str = "neva",
vision_max_batch_size: int = 1,
):
"""Build visual engine"""
model_list = ['neva', 'lita', 'vila', 'vita']
if model_type in model_list:
build_neva_engine(model_type, model_dir, visual_checkpoint_path, vision_max_batch_size)
elif model_type == "video-neva":
build_video_neva_engine(model_dir, visual_checkpoint_path, vision_max_batch_size)
else:
raise RuntimeError(f"Invalid model type {model_type}")
def extract_lora_ckpt(
lora_ckpt: str,
output_dir: str,
):
"""Extrace lora from checkpoint"""
if os.path.exists(os.path.join(lora_ckpt, "model_weights.ckpt")):
model_weight = torch.load(os.path.join(lora_ckpt, "model_weights.ckpt"))
elif os.path.exists(os.path.join(lora_ckpt, "mp_rank_00", "model_weights.ckpt")):
model_weight = torch.load(os.path.join(lora_ckpt, "mp_rank_00", "model_weights.ckpt"))
else:
raise RuntimeError("Imcompatible lora checkpoint format")
model_config = os.path.join(lora_ckpt, "model_config.yaml")
if not os.path.exists(model_config):
raise RuntimeError("Imcompatible lora checkpoint format")
llm_lora_weight = {}
for k, v in model_weight.items():
if "mm_projector" not in k:
llm_lora_weight[k] = v
llm_lora_path = os.path.join(output_dir, "llm_lora.nemo")
with tempfile.TemporaryDirectory() as tmp_dir:
llm_weight_path = os.path.join(tmp_dir, "model_weights.ckpt")
torch.save(llm_lora_weight, llm_weight_path)
with tarfile.open(llm_lora_path, "w") as tar:
tar.add(llm_weight_path, arcname="model_weights.ckpt")
tar.add(model_config, arcname="model_config.yaml")
return llm_lora_path
def build_mllama_engine(
model_dir: str,
checkpoint_path: str,
processor_name: str = "meta-llama/Llama-3.2-11B-Vision-Instruct",
vision_max_batch_size: int = 1,
tensor_parallelism_size: int = 1,
max_input_len: int = 256,
max_output_len: int = 256,
max_batch_size: int = 1,
max_multimodal_len: int = 1024,
dtype: str = "bfloat16",
use_lora_plugin: str = None,
lora_target_modules: List[str] = None,
max_lora_rank: int = 64,
lora_ckpt_list: List[str] = None,
):
"""Build mllama engine"""
new_state_dict, config = convert_mllama_nemo_to_hf(checkpoint_path, processor_name)
hf_model = MllamaForConditionalGeneration(config)
hf_model = hf_model.to(torch.bfloat16)
hf_model.load_state_dict(new_state_dict)
with tempfile.TemporaryDirectory() as tmp_dir:
hf_model_path = os.path.join(tmp_dir, "hf_checkpoint")
hf_model.save_pretrained(hf_model_path)
del hf_model, new_state_dict
build_mllama_visual_engine(
os.path.join(model_dir, "visual_engine"),
hf_model_path,
vision_max_batch_size=vision_max_batch_size,
)
build_mllama_trtllm_engine(
os.path.join(model_dir, "llm_engine"),
hf_model_path,
tensor_parallelism_size,
max_input_len,
max_output_len,
max_batch_size,
max_multimodal_len,
dtype,
)
|