File size: 7,321 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright (c) 2025, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import logging
import os.path
from io import BytesIO
from pathlib import Path
from typing import Any, Dict, Union

import numpy

# tenosrstore is needed to register 'bfloat16' dtype with numpy for zarr compatibility
import tensorstore  # noqa: F401 pylint: disable=unused-import
import torch
from torch.distributed.checkpoint import FileSystemReader, load
from torch.distributed.checkpoint.metadata import BytesStorageMetadata, TensorStorageMetadata

from nemo.export.tarutils import TarPath, ZarrPathStore
from nemo.export.utils._mock_import import _mock_import

LOGGER = logging.getLogger("NeMo")


def nemo_to_path(nemo_checkpoint: Union[Path, str]) -> Union[Path, TarPath]:
    """
    Creates Path / TarPath object suitable for navigating inside the nemo checkpoint.

    Args:
        nemo_checkpoint (Path, str): Path to the NeMo checkpoint.
    Returns:
        Path | TarPath: Suitable Path object for navigating through the checkpoint.
    """
    string_path = str(nemo_checkpoint)

    if os.path.isdir(string_path):
        return Path(string_path)
    return TarPath(string_path)


class TarFileSystemReader(FileSystemReader):
    """Reader that accepts both Path and TarPath checkpoint directory.

    The FileSystemReader works with TarPath, but expects a pure Path.
    It's enough to skip the Path check in __init__.
    """

    def __init__(self, path: Union[Path, TarPath]) -> None:
        """Makes sure that super().__init__ gets a pure path as expected."""
        super_path = str(path) if isinstance(path, TarPath) else path
        super().__init__(super_path)
        if isinstance(path, TarPath):
            self.path = path  # overwrites path set in super().__init__ call


def load_sharded_metadata_torch_dist(
    checkpoint_dir: Union[Path, TarPath], load_extra_states: bool = False
) -> Dict[str, Any]:
    """
    Loads model state dictionary from torch_dist checkpoint.

    Args:
        checkpoint_dir (Path | TarPath): Path to the model weights directory.
        load_extra_states (bool): If set to true, loads BytesIO objects, related to the extra states.
    Returns:
        dict: Loaded model state dictionary (weights are stored in torch tensors).
    """
    fs_reader = TarFileSystemReader(checkpoint_dir)
    metadata = fs_reader.read_metadata()

    state_dict = {
        k: torch.empty(tp.size, dtype=tp.properties.dtype)
        for k, tp in metadata.state_dict_metadata.items()
        if isinstance(tp, TensorStorageMetadata)
    }

    if load_extra_states:
        state_dict.update(
            {k: [] for k, tp in metadata.state_dict_metadata.items() if isinstance(tp, BytesStorageMetadata)}
        )

    load(state_dict, storage_reader=fs_reader)
    return state_dict


def load_sharded_pickle_extra_state_scale(dir: Union[Path, TarPath]) -> Dict[str, BytesIO]:
    """
    Loads model extra states from the .pt shards.

    Args:
        dir (Path | TarPath): Path to the directory with sharded extra states.
    Returns:
        dict: State dictionary corresponding to the loaded extra states.
    """
    pt_files = list(dir.glob('shard_*_*.pt'))
    extra_states = {}
    for file in pt_files:
        shard_name = file.name.split('.')[0]
        with file.open('rb') as opened_file:
            extra_states[dir.name + '/' + shard_name] = torch.load(opened_file, weights_only=True)

    return extra_states


def contains_extra_states(subdir: Union[Path, TarPath]) -> bool:
    """
    Checks if zarr directory contains extra states.

    Args:
        subdir (Path | TarPath): Directory inside the zarr checkpoint.
    Returns:
        bool: Is a directory with extra states
    """
    return list(subdir.glob('shard_0_*.pt')) != []


def load_sharded_metadata_zarr(
    checkpoint_dir: Union[Path, TarPath], load_extra_states: bool = False
) -> Dict[str, Any]:
    """
    Loads model dictionary from the zarr format.

    Args:
        checkpoint_dir (Path | TarPath): Path to the NeMo checkpoint.
        load_extra_states (bool): If set to True, the function will load BufferIO objects with extra states.
    Returns:
        dict: Model state dictionary.
    """
    if load_extra_states:
        torch.serialization.add_safe_globals([BytesIO])

    sharded_state_dict = {}
    for subdir in checkpoint_dir.iterdir():
        if not subdir.is_dir():
            continue

        if load_extra_states and contains_extra_states(subdir):
            sharded_state_dict.update(load_sharded_pickle_extra_state_scale(subdir))

        elif (subdir / '.zarray').exists():
            key = subdir.name
            zstore = ZarrPathStore(subdir)

            import zarr

            arr = zarr.open(zstore, 'r')

            if arr.dtype.name == "bfloat16":
                sharded_state_dict[key] = torch.from_numpy(arr[:].view(numpy.int16)).view(torch.bfloat16)
            else:
                sharded_state_dict[key] = torch.from_numpy(arr[:])

    return sharded_state_dict


def nemo_weights_directory(nemo_path: Union[Path, TarPath]) -> Union[Path, TarPath]:
    """
    Returns a Path pointing to the weights directory inside the NeMo checkpoint.

    Args:
        nemo_path (Path | TarPath): Path to the nemo checkpoint.
    Returns:
        Path | TarPath: Path to the weights directory inside the model checkpoint.
    """
    if (nemo_path / "model_weights").exists():
        return nemo_path / "model_weights"

    if (nemo_path / "weights").exists():
        return nemo_path / "weights"

    return nemo_path


def load_model_weights(checkpoint_path: Union[str, Path], load_extra_states: bool = False) -> Dict[str, Any]:
    """
    Loads NeMo state dictionary. Weights are stored in torch.Tensor

    Args:
        checkpoint_path (str | Path): Path to the NeMo checkpoint.
        load_extra_states (bool): If True, loads BytesIO objects, corresponding to the extra states.
    Returns:
        dict: Model state dictionary.
    """

    nemo_path = nemo_to_path(checkpoint_path)
    nemo_weights = nemo_weights_directory(nemo_path)

    with (nemo_weights / 'metadata.json').open(mode='r') as f:
        config_dict = json.load(f)

    if config_dict['sharded_backend'] == 'zarr':
        return load_sharded_metadata_zarr(nemo_weights, load_extra_states=load_extra_states)
    elif config_dict['sharded_backend'] == 'torch_dist':
        # TODO: Remove mocking imports once MCore is available in NIM containers
        with _mock_import("megatron.core.dist_checkpointing.strategies.torch"):
            return load_sharded_metadata_torch_dist(nemo_weights, load_extra_states=load_extra_states)

    raise NotImplementedError(f'Distributed checkpoint backend {config_dict["sharded_backend"]} not supported')