Spaces:
Runtime error
Runtime error
File size: 20,824 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import os.path
from typing import Iterable, List, Optional, Union
import numpy
import vllm.envs as envs
import wrapt
from vllm import RequestOutput, SamplingParams
from vllm.config import (
CacheConfig,
DeviceConfig,
LoadConfig,
LoadFormat,
LoRAConfig,
ObservabilityConfig,
ParallelConfig,
SchedulerConfig,
VllmConfig,
)
from vllm.executor.ray_utils import initialize_ray_cluster
from vllm.lora.request import LoRARequest
from vllm.v1.core.sched.scheduler import Scheduler as V1Scheduler
from vllm.v1.engine.llm_engine import LLMEngine
from nemo.deploy import ITritonDeployable
from nemo.deploy.utils import cast_output
from nemo.export.utils import convert_lora_nemo_to_canonical, prepare_directory_for_export
from nemo.export.vllm.model_config import NemoModelConfig
from nemo.export.vllm.model_loader import NemoModelLoader
LOGGER = logging.getLogger("NeMo")
@wrapt.decorator
def noop_decorator(func):
"""Used as batch if pytriton is not supported"""
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
return wrapper
batch = noop_decorator
use_pytriton = True
try:
from pytriton.decorators import batch
from pytriton.model_config import Tensor
except Exception:
use_pytriton = False
class vLLMExporter(ITritonDeployable):
"""
The vLLMExporter class implements conversion from a Nemo checkpoint format to something compatible with vLLM,
loading the model in vLLM, and binding that model to a Triton server.
Example:
from nemo.export.vllm_exporter import vLLMExporter
from nemo.deploy import DeployPyTriton
exporter = vLLMExporter()
exporter.export(
nemo_checkpoint='/path/to/checkpoint.nemo',
model_dir='/path/to/temp_dir',
model_type='llama',
)
server = DeployPyTriton(
model=exporter,
triton_model_name='LLAMA',
)
server.deploy()
server.serve()
"""
def __init__(self):
self.request_id = 0
assert envs.VLLM_USE_V1, "Only vLLM V1 is supported"
def export(
self,
nemo_checkpoint: str,
model_dir: str,
model_type: str,
device: str = 'auto',
tensor_parallel_size: int = 1,
pipeline_parallel_size: int = 1,
max_model_len: Optional[int] = None,
lora_checkpoints: Optional[List[str]] = None,
dtype: str = 'auto',
seed: int = 0,
log_stats: bool = True,
weight_storage: str = 'auto',
gpu_memory_utilization: float = 0.9,
quantization: Optional[str] = None,
delete_existing_files: bool = True,
):
"""
Exports the Nemo checkpoint to vLLM and initializes the engine.
Args:
nemo_checkpoint (str): path to the nemo checkpoint.
model_dir (str): path to a temporary directory to store weights and the tokenizer model.
The temp dir may persist between subsequent export operations, in which case
converted weights may be reused to speed up the export.
model_type (str): type of the model, such as "llama", "mistral", "mixtral".
Needs to be compatible with transformers.AutoConfig.
device (str): type of the device to use by the vLLM engine.
Supported values are "auto", "cuda", "cpu", "neuron".
tensor_parallel_size (int): tensor parallelism.
pipeline_parallel_size (int): pipeline parallelism.
Values over 1 are not currently supported by vLLM.
max_model_len (int): model context length.
lora_checkpoints List[str]: paths to LoRA checkpoints.
dtype (str): data type for model weights and activations.
Possible choices: auto, half, float16, bfloat16, float, float32
"auto" will use FP16 precision for FP32 and FP16 models,
and BF16 precision for BF16 models.
seed (int): random seed value.
log_stats (bool): enables logging inference performance statistics by vLLM.
weight_storage (str): controls how converted weights are stored:
"file" - always write weights into a file inside 'model_dir',
"memory" - always do an in-memory conversion,
"cache" - reuse existing files if they are newer than the nemo checkpoint,
"auto" - use "cache" for multi-GPU runs and "memory" for single-GPU runs.
gpu_memory_utilization (float): The fraction of GPU memory to be used for the model
executor, which can range from 0 to 1.
quantization (str): quantization method that is used to quantize the model weights.
Possible choices are None (weights not quantized, default) and "fp8".
delete_existing_files (bool): if True, deletes all the files in model_dir.
"""
prepare_directory_for_export(model_dir, delete_existing_files=delete_existing_files)
# Pouplate the basic configuration structures
device_config = DeviceConfig(device)
assert quantization in {None, 'fp8'}
model_config = NemoModelConfig(
nemo_checkpoint,
model_dir,
model_type,
tokenizer_mode='auto',
dtype=dtype,
seed=seed,
revision=None,
code_revision=None,
tokenizer_revision=None,
max_model_len=max_model_len,
quantization=quantization,
quantization_param_path=None,
enforce_eager=False,
)
if model_config.nemo_model_config.get("fp8", False):
LOGGER.warning(
"NeMo FP8 checkpoint detected, but exporting FP8 quantized engines is not supported for vLLM."
)
parallel_config = ParallelConfig(
pipeline_parallel_size=pipeline_parallel_size, tensor_parallel_size=tensor_parallel_size
)
# vllm/huggingface doesn't like the absense of config file. Place config in load dir.
if model_config.model and not os.path.exists(os.path.join(model_config.model, 'config.json')):
with open(os.path.join(model_config.model, 'config.json'), "w") as f:
json.dump(model_config.hf_text_config.to_dict(), f, indent=2)
# Dynamic online FP8 quantization currently does not support in-memory conversion [TODO]
if quantization is not None and weight_storage in {'auto', 'memory'}:
LOGGER.warning('Setting weight_storage = "file" for FP8 quantization')
weight_storage = 'file'
# See if we have an up-to-date safetensors file
safetensors_file = os.path.join(model_config.model, 'model.safetensors')
safetensors_file_valid = os.path.exists(safetensors_file) and os.path.getmtime(
safetensors_file
) > os.path.getmtime(nemo_checkpoint)
# Decide how we're going to convert the weights
if weight_storage == 'auto':
if parallel_config.distributed_executor_backend is not None:
save_weights = not safetensors_file_valid
inmemory_weight_conversion = False
else:
save_weights = False
inmemory_weight_conversion = True
elif weight_storage == 'cache':
save_weights = not safetensors_file_valid
inmemory_weight_conversion = False
elif weight_storage == 'file':
save_weights = True
inmemory_weight_conversion = False
elif weight_storage == 'memory':
save_weights = False
inmemory_weight_conversion = True
else:
raise ValueError(f'Unsupported value for weight_storage: "{weight_storage}"')
# Convert the weights ahead-of-time, if needed
if save_weights:
NemoModelLoader.convert_and_store_nemo_weights(model_config, safetensors_file)
elif not inmemory_weight_conversion:
LOGGER.info(f'Using cached weights in {safetensors_file}')
# TODO: these values are the defaults from vllm.EngineArgs.
cache_config = CacheConfig(
block_size=16,
gpu_memory_utilization=gpu_memory_utilization,
swap_space=4,
cache_dtype='auto',
sliding_window=model_config.get_sliding_window(),
)
# TODO: these values are the defaults from vllm.EngineArgs.
scheduler_config = SchedulerConfig(
max_num_batched_tokens=None,
max_num_seqs=256,
# Note: max_model_len can be derived by model_config if the input value is None
max_model_len=model_config.max_model_len,
num_lookahead_slots=0,
delay_factor=0.0,
enable_chunked_prefill=False,
scheduler_cls=V1Scheduler,
)
load_config = LoadConfig(
load_format=NemoModelLoader if inmemory_weight_conversion else LoadFormat.SAFETENSORS,
download_dir=None,
model_loader_extra_config=None,
)
# Convert the LoRA checkpoints to vLLM compatible format and derive the configuration structure
lora_config = self._prepare_lora_checkpoints(
model_dir=model_dir, lora_checkpoints=lora_checkpoints, dtype=model_config.dtype
)
# Initialize the cluster and specify the executor class.
if parallel_config.distributed_executor_backend == "ray":
initialize_ray_cluster(parallel_config)
from vllm.v1.executor.ray_distributed_executor import RayDistributedExecutor
executor_class = RayDistributedExecutor
elif parallel_config.distributed_executor_backend == "mp":
from vllm.v1.executor.multiproc_executor import MultiprocExecutor
executor_class = MultiprocExecutor
else:
assert parallel_config.distributed_executor_backend == "uni" or parallel_config.world_size == 1
from vllm.v1.executor.abstract import UniProcExecutor
executor_class = UniProcExecutor
# Initialize the engine
self.engine = LLMEngine(
vllm_config=VllmConfig(
model_config=model_config,
cache_config=cache_config,
parallel_config=parallel_config,
scheduler_config=scheduler_config,
device_config=device_config,
load_config=load_config,
lora_config=lora_config,
observability_config=ObservabilityConfig(),
),
executor_class=executor_class,
log_stats=log_stats,
)
def _prepare_lora_checkpoints(
self, model_dir: str, lora_checkpoints: Optional[List[str]], dtype: str
) -> LoRAConfig:
self.lora_checkpoints = []
if not lora_checkpoints:
return None
index = 0
max_lora_rank = 0
for nemo_file in lora_checkpoints:
if not os.path.isfile(nemo_file):
raise FileNotFoundError(f"LoRA checkpoint file '{nemo_file} does not exist'")
hf_lora_dir = os.path.join(model_dir, f'lora_{index}')
LOGGER.info(f"Converting LoRA checkpoint '{nemo_file}' into '{hf_lora_dir}'...")
_, lora_config = convert_lora_nemo_to_canonical(nemo_file, hf_lora_dir, hf_format=True)
self.lora_checkpoints.append(hf_lora_dir)
rank = lora_config['peft']['lora_tuning']['adapter_dim']
max_lora_rank = max(max_lora_rank, rank)
index += 1
return LoRAConfig(max_lora_rank=max_lora_rank, max_loras=len(self.lora_checkpoints), lora_dtype=dtype)
def _add_request_to_engine(
self,
prompt: str,
max_output_len: int,
temperature: float = 1.0,
top_k: int = 1,
top_p: float = 0.0,
lora_uid: Optional[int] = None,
) -> str:
if top_p <= 0.0:
top_p = 1.0
sampling_params = SamplingParams(
max_tokens=max_output_len, temperature=temperature, top_k=int(top_k), top_p=top_p
)
if lora_uid is not None and lora_uid >= 0 and lora_uid < len(self.lora_checkpoints):
lora_request = LoRARequest(
lora_name=f'LoRA_{lora_uid}', lora_int_id=lora_uid + 1, lora_local_path=self.lora_checkpoints[lora_uid]
)
else:
lora_request = None
request_id = str(self.request_id)
self.request_id += 1
self.engine.add_request(request_id, prompt, sampling_params, lora_request=lora_request)
return request_id
def _forward_regular(self, request_ids: List[str]):
responses = [None] * len(request_ids)
finished = [False] * len(request_ids)
while not all(finished):
request_outputs: List[RequestOutput] = self.engine.step()
for request_output in request_outputs:
if not request_output.finished:
continue
try:
request_index = request_ids.index(request_output.request_id)
except ValueError:
continue
finished[request_index] = request_output.finished
output_text = request_output.outputs[-1].text
responses[request_index] = output_text
return [[response] for response in responses]
def _forward_streaming(self, request_ids: List[str]):
responses = [None] * len(request_ids)
finished = [False] * len(request_ids)
while not all(finished):
request_outputs: List[RequestOutput] = self.engine.step()
for request_output in request_outputs:
try:
request_index = request_ids.index(request_output.request_id)
except ValueError:
continue
finished[request_index] = request_output.finished
output_text = request_output.outputs[-1].text
responses[request_index] = output_text
yield [[response] for response in responses]
def _add_triton_request_to_engine(self, inputs: numpy.ndarray, index: int) -> str:
if 'lora_uids' in inputs:
lora_uid = int(numpy.char.decode(inputs['lora_uids'][index][0], encoding="utf-8"))
else:
lora_uid = None
return self._add_request_to_engine(
prompt=inputs['prompts'][index][0].decode('UTF-8'),
max_output_len=inputs['max_output_len'][index][0],
temperature=inputs['temperature'][index][0],
top_k=inputs['top_k'][index][0],
top_p=inputs['top_p'][index][0],
lora_uid=lora_uid,
)
@property
def get_triton_input(self):
inputs = (
Tensor(name="prompts", shape=(-1,), dtype=bytes),
Tensor(name="max_output_len", shape=(-1,), dtype=numpy.int_, optional=True),
Tensor(name="top_k", shape=(-1,), dtype=numpy.int_, optional=True),
Tensor(name="top_p", shape=(-1,), dtype=numpy.single, optional=True),
Tensor(name="temperature", shape=(-1,), dtype=numpy.single, optional=True),
Tensor(name="lora_uids", shape=(-1,), dtype=bytes, optional=True),
Tensor(name="output_generation_logits", shape=(-1,), dtype=numpy.bool_, optional=True),
Tensor(name="output_context_logits", shape=(-1,), dtype=numpy.bool_, optional=True),
)
return inputs
@property
def get_triton_output(self):
outputs = (Tensor(name="outputs", shape=(-1,), dtype=bytes),)
return outputs
@batch
def triton_infer_fn(self, **inputs: numpy.ndarray):
"""
This function is used to perform inference on a batch of prompts.
"""
request_ids = []
num_requests = len(inputs["prompts"])
for index in range(num_requests):
request_id = self._add_triton_request_to_engine(inputs, index)
request_ids.append(request_id)
responses = self._forward_regular(request_ids)
responses = [r[0] for r in responses]
output_tensor = cast_output(responses, numpy.bytes_)
return {'outputs': output_tensor}
@batch
def triton_infer_fn_streaming(self, **inputs: numpy.ndarray):
"""
This function is used to perform streaming inference.
"""
request_ids = []
num_requests = len(inputs["prompts"])
for index in range(num_requests):
request_id = self._add_triton_request_to_engine(inputs, index)
request_ids.append(request_id)
for responses in self._forward_streaming(request_ids):
responses = [r[0] for r in responses]
output_tensor = cast_output(responses, numpy.bytes_)
yield {'outputs': output_tensor}
# Mimic the TensorRTLLM exporter's forward function, even though we don't support many of its features.
def forward(
self,
input_texts: List[str],
max_output_len: int = 64,
top_k: int = 1,
top_p: float = 0.0,
temperature: float = 1.0,
stop_words_list: Optional[List[str]] = None,
bad_words_list: Optional[List[str]] = None,
no_repeat_ngram_size: Optional[int] = None,
task_ids: Optional[List[str]] = None,
lora_uids: Optional[List[str]] = None,
prompt_embeddings_table=None,
prompt_embeddings_checkpoint_path: Optional[str] = None,
streaming: bool = False,
output_log_probs: bool = False,
output_generation_logits: bool = False,
output_context_logits: bool = False,
) -> Union[List[List[str]], Iterable[List[List[str]]]]:
"""
The forward function performs LLM evaluation on the provided array of prompts with other parameters shared,
and returns the generated texts. If 'streaming' is True, the output texts are returned incrementally
with a generator: one token appended to each output at a time. If 'streaming' is false, the final output texts
are returned as a single list of responses.
"""
if stop_words_list is not None and stop_words_list != []:
raise NotImplementedError("stop_words_list is not supported")
if bad_words_list is not None and bad_words_list != []:
raise NotImplementedError("bad_words_list is not supported")
if no_repeat_ngram_size is not None:
raise NotImplementedError("no_repeat_ngram_size is not supported")
if task_ids is not None and task_ids != []:
raise NotImplementedError("task_ids is not supported")
if prompt_embeddings_table is not None:
raise NotImplementedError("prompt_embeddings_table is not supported")
if prompt_embeddings_checkpoint_path is not None:
raise NotImplementedError("prompt_embeddings_checkpoint_path is not supported")
if output_log_probs:
raise NotImplementedError("output_log_probs is not supported")
if output_generation_logits:
raise NotImplementedError("output_generation_logits is not supported")
if output_context_logits:
raise NotImplementedError("output_context_logits is not supported")
request_ids = []
for index in range(len(input_texts)):
prompt = input_texts[index]
if lora_uids is not None and index < len(lora_uids):
lora_uid = lora_uids[index]
else:
lora_uid = None
request_id = self._add_request_to_engine(
prompt=prompt,
max_output_len=max_output_len,
temperature=temperature,
top_k=top_k,
top_p=top_p,
lora_uid=lora_uid,
)
request_ids.append(request_id)
if streaming:
return self._forward_streaming(request_ids)
else:
return self._forward_regular(request_ids)
|