File size: 20,824 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
# Copyright (c) 2025, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import logging
import os.path
from typing import Iterable, List, Optional, Union

import numpy
import vllm.envs as envs
import wrapt
from vllm import RequestOutput, SamplingParams
from vllm.config import (
    CacheConfig,
    DeviceConfig,
    LoadConfig,
    LoadFormat,
    LoRAConfig,
    ObservabilityConfig,
    ParallelConfig,
    SchedulerConfig,
    VllmConfig,
)
from vllm.executor.ray_utils import initialize_ray_cluster
from vllm.lora.request import LoRARequest
from vllm.v1.core.sched.scheduler import Scheduler as V1Scheduler
from vllm.v1.engine.llm_engine import LLMEngine

from nemo.deploy import ITritonDeployable
from nemo.deploy.utils import cast_output
from nemo.export.utils import convert_lora_nemo_to_canonical, prepare_directory_for_export
from nemo.export.vllm.model_config import NemoModelConfig
from nemo.export.vllm.model_loader import NemoModelLoader

LOGGER = logging.getLogger("NeMo")


@wrapt.decorator
def noop_decorator(func):
    """Used as batch if pytriton is not supported"""

    def wrapper(*args, **kwargs):
        return func(*args, **kwargs)

    return wrapper


batch = noop_decorator
use_pytriton = True
try:
    from pytriton.decorators import batch
    from pytriton.model_config import Tensor
except Exception:
    use_pytriton = False


class vLLMExporter(ITritonDeployable):
    """
    The vLLMExporter class implements conversion from a Nemo checkpoint format to something compatible with vLLM,
    loading the model in vLLM, and binding that model to a Triton server.

    Example:
        from nemo.export.vllm_exporter import vLLMExporter
        from nemo.deploy import DeployPyTriton

        exporter = vLLMExporter()

        exporter.export(
            nemo_checkpoint='/path/to/checkpoint.nemo',
            model_dir='/path/to/temp_dir',
            model_type='llama',
        )

        server = DeployPyTriton(
            model=exporter,
            triton_model_name='LLAMA',
        )

        server.deploy()
        server.serve()
    """

    def __init__(self):
        self.request_id = 0
        assert envs.VLLM_USE_V1, "Only vLLM V1 is supported"

    def export(
        self,
        nemo_checkpoint: str,
        model_dir: str,
        model_type: str,
        device: str = 'auto',
        tensor_parallel_size: int = 1,
        pipeline_parallel_size: int = 1,
        max_model_len: Optional[int] = None,
        lora_checkpoints: Optional[List[str]] = None,
        dtype: str = 'auto',
        seed: int = 0,
        log_stats: bool = True,
        weight_storage: str = 'auto',
        gpu_memory_utilization: float = 0.9,
        quantization: Optional[str] = None,
        delete_existing_files: bool = True,
    ):
        """
        Exports the Nemo checkpoint to vLLM and initializes the engine.

        Args:
            nemo_checkpoint (str): path to the nemo checkpoint.
            model_dir (str): path to a temporary directory to store weights and the tokenizer model.
                The temp dir may persist between subsequent export operations, in which case
                converted weights may be reused to speed up the export.
            model_type (str): type of the model, such as "llama", "mistral", "mixtral".
                Needs to be compatible with transformers.AutoConfig.
            device (str): type of the device to use by the vLLM engine.
                Supported values are "auto", "cuda", "cpu", "neuron".
            tensor_parallel_size (int): tensor parallelism.
            pipeline_parallel_size (int): pipeline parallelism.
                Values over 1 are not currently supported by vLLM.
            max_model_len (int): model context length.
            lora_checkpoints List[str]: paths to LoRA checkpoints.
            dtype (str): data type for model weights and activations.
                Possible choices: auto, half, float16, bfloat16, float, float32
                "auto" will use FP16 precision for FP32 and FP16 models,
                and BF16 precision for BF16 models.
            seed (int): random seed value.
            log_stats (bool): enables logging inference performance statistics by vLLM.
            weight_storage (str): controls how converted weights are stored:
                "file" - always write weights into a file inside 'model_dir',
                "memory" - always do an in-memory conversion,
                "cache" - reuse existing files if they are newer than the nemo checkpoint,
                "auto" - use "cache" for multi-GPU runs and "memory" for single-GPU runs.
            gpu_memory_utilization (float): The fraction of GPU memory to be used for the model
                executor, which can range from 0 to 1.
            quantization (str): quantization method that is used to quantize the model weights.
                Possible choices are None (weights not quantized, default) and "fp8".
            delete_existing_files (bool): if True, deletes all the files in model_dir.
        """
        prepare_directory_for_export(model_dir, delete_existing_files=delete_existing_files)

        # Pouplate the basic configuration structures
        device_config = DeviceConfig(device)

        assert quantization in {None, 'fp8'}

        model_config = NemoModelConfig(
            nemo_checkpoint,
            model_dir,
            model_type,
            tokenizer_mode='auto',
            dtype=dtype,
            seed=seed,
            revision=None,
            code_revision=None,
            tokenizer_revision=None,
            max_model_len=max_model_len,
            quantization=quantization,
            quantization_param_path=None,
            enforce_eager=False,
        )

        if model_config.nemo_model_config.get("fp8", False):
            LOGGER.warning(
                "NeMo FP8 checkpoint detected, but exporting FP8 quantized engines is not supported for vLLM."
            )

        parallel_config = ParallelConfig(
            pipeline_parallel_size=pipeline_parallel_size, tensor_parallel_size=tensor_parallel_size
        )

        # vllm/huggingface doesn't like the absense of config file. Place config in load dir.
        if model_config.model and not os.path.exists(os.path.join(model_config.model, 'config.json')):
            with open(os.path.join(model_config.model, 'config.json'), "w") as f:
                json.dump(model_config.hf_text_config.to_dict(), f, indent=2)

        # Dynamic online FP8 quantization currently does not support in-memory conversion [TODO]
        if quantization is not None and weight_storage in {'auto', 'memory'}:
            LOGGER.warning('Setting weight_storage = "file" for FP8 quantization')
            weight_storage = 'file'

        # See if we have an up-to-date safetensors file
        safetensors_file = os.path.join(model_config.model, 'model.safetensors')
        safetensors_file_valid = os.path.exists(safetensors_file) and os.path.getmtime(
            safetensors_file
        ) > os.path.getmtime(nemo_checkpoint)

        # Decide how we're going to convert the weights
        if weight_storage == 'auto':
            if parallel_config.distributed_executor_backend is not None:
                save_weights = not safetensors_file_valid
                inmemory_weight_conversion = False
            else:
                save_weights = False
                inmemory_weight_conversion = True

        elif weight_storage == 'cache':
            save_weights = not safetensors_file_valid
            inmemory_weight_conversion = False

        elif weight_storage == 'file':
            save_weights = True
            inmemory_weight_conversion = False

        elif weight_storage == 'memory':
            save_weights = False
            inmemory_weight_conversion = True

        else:
            raise ValueError(f'Unsupported value for weight_storage: "{weight_storage}"')

        # Convert the weights ahead-of-time, if needed
        if save_weights:
            NemoModelLoader.convert_and_store_nemo_weights(model_config, safetensors_file)
        elif not inmemory_weight_conversion:
            LOGGER.info(f'Using cached weights in {safetensors_file}')

        # TODO: these values are the defaults from vllm.EngineArgs.
        cache_config = CacheConfig(
            block_size=16,
            gpu_memory_utilization=gpu_memory_utilization,
            swap_space=4,
            cache_dtype='auto',
            sliding_window=model_config.get_sliding_window(),
        )

        # TODO: these values are the defaults from vllm.EngineArgs.
        scheduler_config = SchedulerConfig(
            max_num_batched_tokens=None,
            max_num_seqs=256,
            # Note: max_model_len can be derived by model_config if the input value is None
            max_model_len=model_config.max_model_len,
            num_lookahead_slots=0,
            delay_factor=0.0,
            enable_chunked_prefill=False,
            scheduler_cls=V1Scheduler,
        )

        load_config = LoadConfig(
            load_format=NemoModelLoader if inmemory_weight_conversion else LoadFormat.SAFETENSORS,
            download_dir=None,
            model_loader_extra_config=None,
        )

        # Convert the LoRA checkpoints to vLLM compatible format and derive the configuration structure
        lora_config = self._prepare_lora_checkpoints(
            model_dir=model_dir, lora_checkpoints=lora_checkpoints, dtype=model_config.dtype
        )

        # Initialize the cluster and specify the executor class.
        if parallel_config.distributed_executor_backend == "ray":
            initialize_ray_cluster(parallel_config)
            from vllm.v1.executor.ray_distributed_executor import RayDistributedExecutor

            executor_class = RayDistributedExecutor

        elif parallel_config.distributed_executor_backend == "mp":
            from vllm.v1.executor.multiproc_executor import MultiprocExecutor

            executor_class = MultiprocExecutor

        else:
            assert parallel_config.distributed_executor_backend == "uni" or parallel_config.world_size == 1

            from vllm.v1.executor.abstract import UniProcExecutor

            executor_class = UniProcExecutor

        # Initialize the engine
        self.engine = LLMEngine(
            vllm_config=VllmConfig(
                model_config=model_config,
                cache_config=cache_config,
                parallel_config=parallel_config,
                scheduler_config=scheduler_config,
                device_config=device_config,
                load_config=load_config,
                lora_config=lora_config,
                observability_config=ObservabilityConfig(),
            ),
            executor_class=executor_class,
            log_stats=log_stats,
        )

    def _prepare_lora_checkpoints(
        self, model_dir: str, lora_checkpoints: Optional[List[str]], dtype: str
    ) -> LoRAConfig:
        self.lora_checkpoints = []

        if not lora_checkpoints:
            return None

        index = 0
        max_lora_rank = 0
        for nemo_file in lora_checkpoints:
            if not os.path.isfile(nemo_file):
                raise FileNotFoundError(f"LoRA checkpoint file '{nemo_file} does not exist'")

            hf_lora_dir = os.path.join(model_dir, f'lora_{index}')

            LOGGER.info(f"Converting LoRA checkpoint '{nemo_file}' into '{hf_lora_dir}'...")

            _, lora_config = convert_lora_nemo_to_canonical(nemo_file, hf_lora_dir, hf_format=True)
            self.lora_checkpoints.append(hf_lora_dir)

            rank = lora_config['peft']['lora_tuning']['adapter_dim']
            max_lora_rank = max(max_lora_rank, rank)

            index += 1

        return LoRAConfig(max_lora_rank=max_lora_rank, max_loras=len(self.lora_checkpoints), lora_dtype=dtype)

    def _add_request_to_engine(
        self,
        prompt: str,
        max_output_len: int,
        temperature: float = 1.0,
        top_k: int = 1,
        top_p: float = 0.0,
        lora_uid: Optional[int] = None,
    ) -> str:
        if top_p <= 0.0:
            top_p = 1.0

        sampling_params = SamplingParams(
            max_tokens=max_output_len, temperature=temperature, top_k=int(top_k), top_p=top_p
        )

        if lora_uid is not None and lora_uid >= 0 and lora_uid < len(self.lora_checkpoints):
            lora_request = LoRARequest(
                lora_name=f'LoRA_{lora_uid}', lora_int_id=lora_uid + 1, lora_local_path=self.lora_checkpoints[lora_uid]
            )
        else:
            lora_request = None

        request_id = str(self.request_id)
        self.request_id += 1

        self.engine.add_request(request_id, prompt, sampling_params, lora_request=lora_request)

        return request_id

    def _forward_regular(self, request_ids: List[str]):
        responses = [None] * len(request_ids)
        finished = [False] * len(request_ids)

        while not all(finished):
            request_outputs: List[RequestOutput] = self.engine.step()

            for request_output in request_outputs:
                if not request_output.finished:
                    continue

                try:
                    request_index = request_ids.index(request_output.request_id)
                except ValueError:
                    continue

                finished[request_index] = request_output.finished
                output_text = request_output.outputs[-1].text
                responses[request_index] = output_text

        return [[response] for response in responses]

    def _forward_streaming(self, request_ids: List[str]):
        responses = [None] * len(request_ids)
        finished = [False] * len(request_ids)

        while not all(finished):
            request_outputs: List[RequestOutput] = self.engine.step()

            for request_output in request_outputs:
                try:
                    request_index = request_ids.index(request_output.request_id)
                except ValueError:
                    continue

                finished[request_index] = request_output.finished
                output_text = request_output.outputs[-1].text
                responses[request_index] = output_text

            yield [[response] for response in responses]

    def _add_triton_request_to_engine(self, inputs: numpy.ndarray, index: int) -> str:
        if 'lora_uids' in inputs:
            lora_uid = int(numpy.char.decode(inputs['lora_uids'][index][0], encoding="utf-8"))
        else:
            lora_uid = None

        return self._add_request_to_engine(
            prompt=inputs['prompts'][index][0].decode('UTF-8'),
            max_output_len=inputs['max_output_len'][index][0],
            temperature=inputs['temperature'][index][0],
            top_k=inputs['top_k'][index][0],
            top_p=inputs['top_p'][index][0],
            lora_uid=lora_uid,
        )

    @property
    def get_triton_input(self):
        inputs = (
            Tensor(name="prompts", shape=(-1,), dtype=bytes),
            Tensor(name="max_output_len", shape=(-1,), dtype=numpy.int_, optional=True),
            Tensor(name="top_k", shape=(-1,), dtype=numpy.int_, optional=True),
            Tensor(name="top_p", shape=(-1,), dtype=numpy.single, optional=True),
            Tensor(name="temperature", shape=(-1,), dtype=numpy.single, optional=True),
            Tensor(name="lora_uids", shape=(-1,), dtype=bytes, optional=True),
            Tensor(name="output_generation_logits", shape=(-1,), dtype=numpy.bool_, optional=True),
            Tensor(name="output_context_logits", shape=(-1,), dtype=numpy.bool_, optional=True),
        )
        return inputs

    @property
    def get_triton_output(self):
        outputs = (Tensor(name="outputs", shape=(-1,), dtype=bytes),)
        return outputs

    @batch
    def triton_infer_fn(self, **inputs: numpy.ndarray):
        """
        This function is used to perform inference on a batch of prompts.
        """
        request_ids = []
        num_requests = len(inputs["prompts"])
        for index in range(num_requests):
            request_id = self._add_triton_request_to_engine(inputs, index)
            request_ids.append(request_id)

        responses = self._forward_regular(request_ids)
        responses = [r[0] for r in responses]

        output_tensor = cast_output(responses, numpy.bytes_)
        return {'outputs': output_tensor}

    @batch
    def triton_infer_fn_streaming(self, **inputs: numpy.ndarray):
        """
        This function is used to perform streaming inference.
        """
        request_ids = []
        num_requests = len(inputs["prompts"])
        for index in range(num_requests):
            request_id = self._add_triton_request_to_engine(inputs, index)
            request_ids.append(request_id)

        for responses in self._forward_streaming(request_ids):
            responses = [r[0] for r in responses]
            output_tensor = cast_output(responses, numpy.bytes_)
            yield {'outputs': output_tensor}

    # Mimic the TensorRTLLM exporter's forward function, even though we don't support many of its features.
    def forward(
        self,
        input_texts: List[str],
        max_output_len: int = 64,
        top_k: int = 1,
        top_p: float = 0.0,
        temperature: float = 1.0,
        stop_words_list: Optional[List[str]] = None,
        bad_words_list: Optional[List[str]] = None,
        no_repeat_ngram_size: Optional[int] = None,
        task_ids: Optional[List[str]] = None,
        lora_uids: Optional[List[str]] = None,
        prompt_embeddings_table=None,
        prompt_embeddings_checkpoint_path: Optional[str] = None,
        streaming: bool = False,
        output_log_probs: bool = False,
        output_generation_logits: bool = False,
        output_context_logits: bool = False,
    ) -> Union[List[List[str]], Iterable[List[List[str]]]]:
        """
        The forward function performs LLM evaluation on the provided array of prompts with other parameters shared,
        and returns the generated texts. If 'streaming' is True, the output texts are returned incrementally
        with a generator: one token appended to each output at a time. If 'streaming' is false, the final output texts
        are returned as a single list of responses.
        """

        if stop_words_list is not None and stop_words_list != []:
            raise NotImplementedError("stop_words_list is not supported")

        if bad_words_list is not None and bad_words_list != []:
            raise NotImplementedError("bad_words_list is not supported")

        if no_repeat_ngram_size is not None:
            raise NotImplementedError("no_repeat_ngram_size is not supported")

        if task_ids is not None and task_ids != []:
            raise NotImplementedError("task_ids is not supported")

        if prompt_embeddings_table is not None:
            raise NotImplementedError("prompt_embeddings_table is not supported")

        if prompt_embeddings_checkpoint_path is not None:
            raise NotImplementedError("prompt_embeddings_checkpoint_path is not supported")

        if output_log_probs:
            raise NotImplementedError("output_log_probs is not supported")

        if output_generation_logits:
            raise NotImplementedError("output_generation_logits is not supported")

        if output_context_logits:
            raise NotImplementedError("output_context_logits is not supported")

        request_ids = []
        for index in range(len(input_texts)):
            prompt = input_texts[index]

            if lora_uids is not None and index < len(lora_uids):
                lora_uid = lora_uids[index]
            else:
                lora_uid = None

            request_id = self._add_request_to_engine(
                prompt=prompt,
                max_output_len=max_output_len,
                temperature=temperature,
                top_k=top_k,
                top_p=top_p,
                lora_uid=lora_uid,
            )
            request_ids.append(request_id)

        if streaming:
            return self._forward_streaming(request_ids)
        else:
            return self._forward_regular(request_ids)