File size: 26,499 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
# Copyright (c) 2025, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from contextlib import ExitStack, contextmanager, nullcontext
from datetime import timedelta
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    ContextManager,
    Dict,
    Generator,
    Iterator,
    List,
    Literal,
    Optional,
    Union,
)

import torch
from lightning.fabric.accelerators import CPUAccelerator
from lightning.fabric.accelerators.accelerator import Accelerator
from lightning.fabric.plugins.collectives.torch_collective import default_pg_timeout
from lightning.fabric.plugins.environments.cluster_environment import ClusterEnvironment
from lightning.fabric.plugins.io.checkpoint_io import CheckpointIO
from lightning.fabric.plugins.precision import Precision
from lightning.fabric.strategies import DDPStrategy
from lightning.fabric.strategies.strategy import _validate_keys_for_strict_loading
from lightning.fabric.utilities.types import _PATH, _Stateful
from lightning.pytorch import LightningDataModule
from lightning.pytorch.loops.fetchers import _DataFetcher
from lightning.pytorch.plugins.io.wrapper import _WrappingCheckpointIO
from lightning.pytorch.utilities.combined_loader import CombinedLoader

try:
    from megatron.core.distributed import DistributedDataParallelConfig
    from megatron.core.optimizer import OptimizerConfig

    HAVE_MEGATRON_CORE = True

except (ImportError, ModuleNotFoundError):

    DistributedDataParallelConfig = object
    OptimizerConfig = object
    HAVE_MEGATRON_CORE = False

from torch import Tensor, nn
from torch.distributed.algorithms.ddp_comm_hooks.debugging_hooks import noop_hook
from torch.nn import Module
from torch.nn.parallel import DistributedDataParallel
from torch.optim import Optimizer
from torch.utils.data import DataLoader
from typing_extensions import override

from nemo.lightning import _strategy_lib
from nemo.lightning.fabric.conversion import to_fabric
from nemo.lightning.io.pl import MegatronCheckpointIO, ckpt_to_weights_subdir
from nemo.lightning.megatron_parallel import CallbackConnector, MegatronParallel
from nemo.lightning.pytorch.strategies import MegatronStrategy
from nemo.utils.import_utils import safe_import
from nemo.utils.model_utils import unwrap_model

mto, HAVE_MODELOPT = safe_import("modelopt.torch.opt")

if TYPE_CHECKING:
    from nemo.lightning.pytorch.plugins.data_sampler import DataSampler


DDPLiteral = Literal["megatron", "pytorch"]


class FabricMegatronStrategy(DDPStrategy):
    """
    Fabric strategy for Megatron.
    """

    def __init__(
        self,
        tensor_model_parallel_size: int = 1,
        pipeline_model_parallel_size: int = 1,
        virtual_pipeline_model_parallel_size: Optional[int] = None,
        pipeline_model_parallel_comm_backend: str = None,
        microbatch_group_size_per_vp_stage: Optional[int] = None,
        context_parallel_size: int = 1,
        sequence_parallel: bool = False,
        expert_model_parallel_size: int = 1,
        moe_extended_tp: bool = False,
        expert_tensor_parallel_size: int = None,
        encoder_tensor_model_parallel_size: Optional[int] = 0,
        encoder_pipeline_model_parallel_size: Optional[int] = 0,
        data_sampler: Optional["DataSampler"] = None,
        accelerator: Optional[Accelerator] = None,
        parallel_devices: Optional[List[torch.device]] = None,
        cluster_environment: Optional[ClusterEnvironment] = None,
        checkpoint_io: Optional[CheckpointIO] = None,
        precision: Optional[Precision] = None,
        megatron_callbacks: Optional[CallbackConnector] = None,
        ddp: Union[DDPLiteral, DistributedDataParallelConfig] = "megatron",
        process_group_backend: Optional[str] = None,
        timeout: Optional[timedelta] = default_pg_timeout,
        start_method: Literal["popen", "spawn", "fork", "forkserver"] = "popen",
        no_ddp_communication_hook: bool = True,
        output_data_idx: bool = False,
        pipeline_dtype: Optional[torch.dtype] = None,
        init_model_parallel: bool = True,
        use_tp_pp_dp_mapping: bool = False,
        num_distributed_optimizer_instances: int = 1,
        nccl_communicator_config_path: Optional[str] = None,
        **kwargs: Any,
    ) -> None:
        super().__init__(
            accelerator=accelerator,
            parallel_devices=parallel_devices,
            cluster_environment=cluster_environment,
            checkpoint_io=checkpoint_io,
            precision=precision,
            process_group_backend=process_group_backend,
            timeout=timeout,
            start_method=start_method,
            **kwargs,
        )
        self.megatron_callbacks = CallbackConnector()
        self.data_sampler: Optional['DataSampler'] = data_sampler
        self.tensor_model_parallel_size = tensor_model_parallel_size
        self.pipeline_model_parallel_size = pipeline_model_parallel_size
        self.pipeline_model_parallel_comm_backend = pipeline_model_parallel_comm_backend
        self.microbatch_group_size_per_vp_stage = (
            microbatch_group_size_per_vp_stage
            if microbatch_group_size_per_vp_stage is not None
            else pipeline_model_parallel_size
        )
        self.context_parallel_size = context_parallel_size
        self.expert_model_parallel_size = expert_model_parallel_size
        self.expert_tensor_parallel_size = expert_tensor_parallel_size
        self.moe_extended_tp = moe_extended_tp
        self.virtual_pipeline_model_parallel_size = virtual_pipeline_model_parallel_size
        self.sequence_parallel = sequence_parallel
        self.encoder_tensor_model_parallel_size = encoder_tensor_model_parallel_size
        self.encoder_pipeline_model_parallel_size = encoder_pipeline_model_parallel_size
        self.pipeline_dtype = pipeline_dtype
        self._init_model_parallel = init_model_parallel
        self.use_tp_pp_dp_mapping = use_tp_pp_dp_mapping
        self.num_distributed_optimizer_instances = num_distributed_optimizer_instances
        self.nccl_communicator_config_path = nccl_communicator_config_path
        self.no_ddp_communication_hook = no_ddp_communication_hook
        self.megatron_callbacks = CallbackConnector()
        if megatron_callbacks:
            self.megatron_callbacks.add(megatron_callbacks)
        self.output_data_idx = output_data_idx
        self.data_sampler: Optional["DataSampler"] = data_sampler

        # used in NVIDIA NGC PyTorch containers
        _strategy_lib.enable_nvidia_optimizations()

        self._ddp = ddp
        if ddp == "megatron":
            self.ddp_config = DistributedDataParallelConfig()
        elif isinstance(ddp, DistributedDataParallelConfig):
            self.ddp_config = ddp
        elif ddp == "pytorch":
            self.ddp_config = None
            self.no_ddp_communication_hook = False
        else:
            raise ValueError(f"Invalid DDP type: {ddp}")

    @override
    def _setup_distributed(self) -> None:
        self._set_world_ranks()

        assert self.cluster_environment is not None
        _strategy_lib.init_parallel_ranks(
            world_size=self.cluster_environment.world_size(),
            global_rank=self.cluster_environment.global_rank(),
            local_rank=self.cluster_environment.local_rank(),
            parallel_config=self.parallelism,
        )

        super()._setup_distributed()
        torch.cuda.set_device(self.cluster_environment.local_rank())

        # TODO: Fix this:
        # if self.data_config is not None:
        #     _strategy_lib.initialize_data(self.cluster_environment.global_rank(), self.data_config)
        _strategy_lib.init_model_parallel()

    def process_datamodule(self, datamodule: LightningDataModule) -> LightningDataModule:
        """
        Process the datamodule.
        """
        datamodule.setup()

        if not self.data_sampler and hasattr(datamodule, "data_sampler"):
            self.data_sampler = datamodule.data_sampler

        if self.data_sampler:
            self.data_sampler.setup(self.cluster_environment.global_rank())

        return datamodule

    @override
    def process_dataloader(self, dataloader: DataLoader) -> Iterator:
        """
        Process the dataloader. Returns an iterator.
        """
        if self.data_sampler:
            dataloader = self.data_sampler.transform_dataloader(dataloader)

        # Code taken from:
        # https://github.com/Lightning-AI/pytorch-lightning
        # /blob/6cbe9ceb560d798892bdae9186291acf9bf5d2e3/src/lightning/pytorch/loops/fit_loop.py
        # L258-L260
        output = _MegatronDataLoaderIterDataFetcher(output_data_idx=self.output_data_idx)
        output.setup(CombinedLoader(dataloader, "max_size_cycle"))
        iter(output)

        return output

    def setup_megatron_optimizer(
        self,
        model: MegatronParallel,
        optimizer_config: OptimizerConfig,
        no_weight_decay_cond: Optional[Callable] = None,
        scale_lr_cond: Optional[Callable] = None,
        lr_mult: float = 1.0,
    ) -> Optimizer:
        """
        Setup the Megatron optimizer.
        """
        if hasattr(self.precision, "convert_config"):
            optimizer_config = self.precision.convert_config(optimizer_config)

        assert optimizer_config.lr is not None, "Learning rate must be set in optimizer config"

        return _strategy_lib.setup_megatron_optimizer(
            model,
            optimizer_config,
            no_weight_decay_cond=no_weight_decay_cond,
            scale_lr_cond=scale_lr_cond,
            lr_mult=lr_mult,
        )

    @override
    def setup_optimizer(self, optimizer: Optimizer) -> Optimizer:
        """Pass the optimizer to the precision-plugin if needed & add it as callback."""
        if hasattr(self._precision, "setup_optimizer"):
            optimizer = self._precision.setup_optimizer(optimizer)

        self.megatron_callbacks.add(optimizer)

        return optimizer

    @override
    def setup_module(self, module: Module) -> MegatronParallel:
        """
        Setup the torch module. Returns a MegatronParallel object.
        """
        from megatron.core.utils import get_model_config

        _strategy_lib.set_model_parallel_attributes(module, self.parallelism)

        convert_module_fn = None
        if hasattr(self.precision, "convert_module"):
            convert_module_fn = self.precision.convert_module

        if hasattr(self.precision, "convert_config"):
            self.precision.convert_config(get_model_config(module))
            if self.ddp_config:
                self.precision.convert_config(self.ddp_config)

        # Call configure_model if it's overridden (relevant for LightningModules with lazy initialization)
        if hasattr(module, "configure_model"):
            module.configure_model()

        megatron_parallel = MegatronParallel(
            module,
            precision_plugin=self.precision,
            vp_size=self.virtual_pipeline_model_parallel_size,
            cpu=isinstance(self.accelerator, CPUAccelerator),
            ddp_config=self.ddp_config,
            convert_module_fn=convert_module_fn,
        )

        if self._init_model_parallel:
            megatron_parallel.init_model_parallel()

        if self.data_sampler:
            megatron_parallel.callbacks.add(self.data_sampler)

        if not self.ddp_config:
            from megatron.core import mpu

            from nemo.utils import AppState

            app_state = AppState()

            if app_state.model_parallel_size is not None:
                self._ddp_kwargs["process_group"] = mpu.get_data_parallel_group()

            dist_data_parallel = super().setup_module(megatron_parallel)
            if self.no_ddp_communication_hook:
                # When using custom gradient accumulation and allreduce, disable
                # DDP communication hook that works on the gradient bucket.
                # Instead, use the custom gradient function and communication hook,
                # which is defined in the master optimizer wrapper.
                dist_data_parallel.require_backward_grad_sync = False
                dist_data_parallel.register_comm_hook(None, noop_hook)

            return dist_data_parallel

        return megatron_parallel

    def module_init_context(self, empty_init: Optional[bool] = None) -> ContextManager:
        """
        Get the context manager used for initializing the module.
        """
        precision_init_ctx = self.precision.module_init_context()
        module_sharded_ctx = self.megatron_context()
        stack = ExitStack()
        if empty_init:
            # Materialization happens in `setup`. When modules get wrapped by FSDP, the sequence of operations is:
            # 1) materialize module 2) call `reset_parameters()` 3) shard the module.
            # These operations are applied to each submodule 'bottom up' in the module hierarchy.
            stack.enter_context(torch.device("meta"))
        stack.enter_context(precision_init_ctx)
        stack.enter_context(module_sharded_ctx)

        return stack

    def module_to_device(self, module: nn.Module) -> None:
        """
        Move the module to the device.
        """
        pass

    @override
    def save_checkpoint(
        self,
        path: _PATH,
        state: Dict[str, Union[Module, Optimizer, Any]],
        storage_options: Optional[Any] = None,
        filter_dict: Optional[Dict[str, Callable[[str, Any], bool]]] = None,
    ) -> None:
        """Save model, optimizer, and other state as a checkpoint file.

        Args:
            path: A path to where the file(s) should be saved
            state: A dictionary with contents to be saved. If the dict contains modules or optimizers, their
                state-dict will be retrieved and converted automatically.
            storage_options: Additional options for the ``CheckpointIO`` plugin
            filter: An optional dictionary containing filter callables that return a boolean indicating whether the
                given item should be saved (``True``) or filtered out (``False``). Each filter key should match a
                state key, where its filter will be applied to the ``state_dict`` generated.

        """
        if not storage_options:
            storage_options = {}
        storage_options['content_metadata'] = self.sharded_state_dict_metadata
        state = self._convert_stateful_objects_in_state(state, filter=(filter_dict or {}))
        self.checkpoint_io.save_checkpoint(checkpoint=state, path=path, storage_options=storage_options)

    def load_checkpoint(
        self,
        path: _PATH,
        state: Optional[Union[Module, Optimizer, Dict[str, Union[Module, Optimizer, Any]]]] = None,
        strict: bool = True,
    ) -> Dict[str, Any]:
        """
        Load the checkpoint.
        """
        if isinstance(state, Optimizer):
            raise NotImplementedError("Optimizer loading is not supported, pass it as a dict including the model")
        unwrapped_model = unwrap_model(state["state_dict"])

        from nemo.collections.vlm.llama4.model.base import Llama4OmniBaseModel

        if HAVE_MODELOPT and isinstance(unwrapped_model, Llama4OmniBaseModel):
            # If present, first restore and modify the model according to the ModelOpt state.
            # Avoid quantizers being added to teacher model if model is a distillation model.
            core_model = unwrapped_model.language_model
            with core_model.hide_teacher_model() if hasattr(core_model, "hide_teacher_model") else nullcontext():
                mto.plugins.restore_sharded_modelopt_state(
                    [core_model], ckpt_to_weights_subdir(path, is_saving=False), prefix="module.language_model."
                )
            if mto.ModeloptStateManager.is_converted(core_model):
                print("Restored Model-Optimizer state from checkpoint.")
        torch.cuda.empty_cache()

        # After dist_checkpointing.load, sharded tensors will be replaced with tensors
        sharded_sd_metadata = self.unwrapped_checkpoint_io.load_content_metadata(path)
        sharded_state_dict = {}
        if isinstance(state, Module):
            sharded_state_dict["state_dict"] = state.sharded_state_dict(metadata=sharded_sd_metadata)
        elif strict:
            if isinstance(state['state_dict'], DistributedDataParallel):
                state["state_dict"] = state['state_dict'].module
            sharded_state_dict["state_dict"] = state["state_dict"].sharded_state_dict(metadata=sharded_sd_metadata)
            if "optimizer" in state:
                sharded_state_dict["optimizer"] = _strategy_lib.optimizer_sharded_state_dict(
                    state["state_dict"],
                    state["optimizer"],
                    is_loading=True,
                    metadata=sharded_sd_metadata,
                )
        else:
            for obj in state.items():
                if isinstance(obj, Module):
                    sharded_state_dict["state_dict"] = obj.sharded_state_dict(metadata=sharded_sd_metadata)
                elif isinstance(obj, Optimizer):
                    sharded_state_dict["optimizer"] = _strategy_lib.optimizer_sharded_state_dict(
                        obj, is_loading=True, metadata=sharded_sd_metadata
                    )

        checkpoint = self.checkpoint_io.load_checkpoint(path, sharded_state_dict=sharded_state_dict)

        if isinstance(state, Module):
            self.load_module_state_dict(module=state, state_dict=checkpoint, strict=strict)
            return {}

        _validate_keys_for_strict_loading(state.keys(), checkpoint.keys(), strict=strict)
        for name, obj in state.copy().items():
            if name not in checkpoint:
                continue
            if isinstance(obj, _Stateful):
                if isinstance(obj, Module):
                    self.load_module_state_dict(module=obj, state_dict=checkpoint.pop(name), strict=strict)
                else:
                    obj.load_state_dict(checkpoint.pop(name))
            else:
                state[name] = checkpoint.pop(name)

        return checkpoint

    @override
    def load_module_state_dict(
        self, module: Module, state_dict: Dict[str, Union[Any, Tensor]], strict: bool = True
    ) -> None:
        """
        Load the module state dict.
        """
        _strategy_lib.load_model_state_dict(module, state_dict, strict=strict)

    @property
    def sharded_state_dict_metadata(self):
        """Metadata used for sharded_state_dict generation during checkpoint save."""
        metadata = {}
        metadata['singleton_local_shards'] = False
        metadata['chained_optim_avoid_prefix'] = True
        if isinstance(self.ddp_config, DistributedDataParallelConfig) and self.ddp_config.use_distributed_optimizer:
            metadata['distrib_optim_sharding_type'] = 'dp_reshardable'
        return metadata

    @contextmanager
    def megatron_context(self) -> Generator[None, None, None]:
        """
        Context manager for Megatron.
        """
        from megatron.core.extensions import transformer_engine as _te

        original = _te._get_extra_te_kwargs  # noqa: SLF001

        def _get_extra_te_kwargs_meta(c):
            """Forces device to meta"""
            kwargs = original(c)
            kwargs['device'] = 'meta'
            return kwargs

        _te._get_extra_te_kwargs = _get_extra_te_kwargs_meta  # noqa: SLF001

        _orig_perform_initialization = self.parallelism.perform_initialization
        _orig_use_cpu_initialization = self.parallelism.use_cpu_initialization

        self.parallelism.perform_initialization = False
        self.parallelism.use_cpu_initialization = True

        yield

        _te._get_extra_te_kwargs = original  # noqa: SLF001
        self.parallelism.perform_initialization = _orig_perform_initialization
        self.parallelism.use_cpu_initialization = _orig_use_cpu_initialization

    @property
    @override
    def checkpoint_io(self) -> CheckpointIO:
        """
        Get the checkpoint IO.
        """
        if self._checkpoint_io is None:
            self._checkpoint_io = MegatronCheckpointIO()
        elif isinstance(self._checkpoint_io, _WrappingCheckpointIO):
            self._checkpoint_io.checkpoint_io = MegatronCheckpointIO()

        return self._checkpoint_io

    @property
    def unwrapped_checkpoint_io(self) -> CheckpointIO:
        """Unwraps `checkpoint_io` from all wrappers."""
        checkpoint_io = self.checkpoint_io
        while isinstance(checkpoint_io, _WrappingCheckpointIO):
            checkpoint_io = checkpoint_io.checkpoint_io
        return checkpoint_io

    @property
    def parallelism(self):
        """
        Get the parallelism config.
        """
        from nemo.lightning.pytorch.strategies.megatron_strategy import ParallelismConfig

        return ParallelismConfig(
            tensor_model_parallel_size=self.tensor_model_parallel_size,
            pipeline_model_parallel_size=self.pipeline_model_parallel_size,
            pipeline_model_parallel_comm_backend=self.pipeline_model_parallel_comm_backend,
            virtual_pipeline_model_parallel_size=self.virtual_pipeline_model_parallel_size,
            microbatch_group_size_per_vp_stage=self.microbatch_group_size_per_vp_stage,
            context_parallel_size=self.context_parallel_size,
            sequence_parallel=self.sequence_parallel,
            expert_model_parallel_size=self.expert_model_parallel_size,
            expert_tensor_parallel_size=self.expert_tensor_parallel_size,
            moe_extended_tp=self.moe_extended_tp,
            encoder_tensor_model_parallel_size=self.encoder_tensor_model_parallel_size,
            encoder_pipeline_model_parallel_size=self.encoder_pipeline_model_parallel_size,
            pipeline_dtype=self.pipeline_dtype,
            use_tp_pp_dp_mapping=self.use_tp_pp_dp_mapping,
            num_distributed_optimizer_instances=self.num_distributed_optimizer_instances,
            nccl_communicator_config_path=self.nccl_communicator_config_path,
        )


# TODO: Fix this
class _MegatronDataLoaderIterDataFetcher(_DataFetcher):
    def __init__(self, *args: Any, output_data_idx: bool = False, **kwargs: Any) -> None:
        super().__init__(*args, **kwargs)
        self.output_data_idx = output_data_idx
        self._batch: Any = None
        self._batch_idx: int = 0
        self._dataloader_idx: int = 0

    def __iter__(self) -> "_MegatronDataLoaderIterDataFetcher":
        super().__iter__()
        self.iterator_wrapper = iter(_DataFetcherWrapper(self, output_data_idx=self.output_data_idx))
        return self

    def __next__(self) -> Iterator["_DataFetcherWrapper"]:  # type: ignore[override]
        if self.done:
            raise StopIteration
        return self.iterator_wrapper

    def reset(self) -> None:
        """
        Reset the data fetcher.
        """
        super().reset()
        self._batch = None
        self._batch_idx = 0
        self._dataloader_idx = 0


class _DataFetcherWrapper(Iterator):
    def __init__(
        self,
        data_fetcher: _MegatronDataLoaderIterDataFetcher,
        output_data_idx: bool = False,
    ) -> None:
        self.data_fetcher = data_fetcher
        self.output_data_idx = output_data_idx

    @property
    def done(self) -> bool:
        """
        Check if the data fetcher is done.
        """
        return self.data_fetcher.done

    @property
    def fetched(self) -> int:
        """
        Check if the data fetcher is fetched.
        """
        return self.data_fetcher.fetched

    @property
    def length(self) -> Optional[int]:
        """
        Get the length of the data fetcher.
        """
        return self.data_fetcher.length

    @property
    def data_config(self):
        """
        Get the data config.
        """
        return self.data_fetcher.data_config

    def __next__(self):
        fetcher = self.data_fetcher
        if fetcher.done:
            raise StopIteration
        batch, batch_idx, dataloader_idx = super(_MegatronDataLoaderIterDataFetcher, fetcher).__next__()
        # save the state so the loops can access it
        fetcher._batch = batch  # noqa: SLF001
        fetcher._batch_idx = batch_idx  # noqa: SLF001
        fetcher._dataloader_idx = dataloader_idx  # noqa: SLF001

        if not self.output_data_idx:
            return batch

        return batch, batch_idx, dataloader_idx


@to_fabric.register(MegatronStrategy)
def convert_megatron_strategy(strategy: MegatronStrategy) -> FabricMegatronStrategy:
    """
    Convert the Megatron strategy to the Fabric strategy.
    """
    return FabricMegatronStrategy(
        tensor_model_parallel_size=strategy.tensor_model_parallel_size,
        pipeline_model_parallel_size=strategy.pipeline_model_parallel_size,
        pipeline_model_parallel_comm_backend=strategy.pipeline_model_parallel_comm_backend,
        virtual_pipeline_model_parallel_size=strategy.virtual_pipeline_model_parallel_size,
        microbatch_group_size_per_vp_stage=strategy.microbatch_group_size_per_vp_stage,
        context_parallel_size=strategy.context_parallel_size,
        sequence_parallel=strategy.sequence_parallel,
        expert_model_parallel_size=strategy.expert_model_parallel_size,
        expert_tensor_parallel_size=strategy.expert_tensor_parallel_size,
        moe_extended_tp=strategy.moe_extended_tp,
        encoder_tensor_model_parallel_size=strategy.encoder_tensor_model_parallel_size,
        encoder_pipeline_model_parallel_size=strategy.encoder_pipeline_model_parallel_size,
        pipeline_dtype=strategy.pipeline_dtype,
        use_tp_pp_dp_mapping=strategy.use_tp_pp_dp_mapping,
        ddp=strategy._ddp,
        process_group_backend=strategy.process_group_backend,
        timeout=strategy._timeout,
        start_method=strategy._start_method,
    )