Spaces:
Runtime error
Runtime error
File size: 26,499 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import ExitStack, contextmanager, nullcontext
from datetime import timedelta
from typing import (
TYPE_CHECKING,
Any,
Callable,
ContextManager,
Dict,
Generator,
Iterator,
List,
Literal,
Optional,
Union,
)
import torch
from lightning.fabric.accelerators import CPUAccelerator
from lightning.fabric.accelerators.accelerator import Accelerator
from lightning.fabric.plugins.collectives.torch_collective import default_pg_timeout
from lightning.fabric.plugins.environments.cluster_environment import ClusterEnvironment
from lightning.fabric.plugins.io.checkpoint_io import CheckpointIO
from lightning.fabric.plugins.precision import Precision
from lightning.fabric.strategies import DDPStrategy
from lightning.fabric.strategies.strategy import _validate_keys_for_strict_loading
from lightning.fabric.utilities.types import _PATH, _Stateful
from lightning.pytorch import LightningDataModule
from lightning.pytorch.loops.fetchers import _DataFetcher
from lightning.pytorch.plugins.io.wrapper import _WrappingCheckpointIO
from lightning.pytorch.utilities.combined_loader import CombinedLoader
try:
from megatron.core.distributed import DistributedDataParallelConfig
from megatron.core.optimizer import OptimizerConfig
HAVE_MEGATRON_CORE = True
except (ImportError, ModuleNotFoundError):
DistributedDataParallelConfig = object
OptimizerConfig = object
HAVE_MEGATRON_CORE = False
from torch import Tensor, nn
from torch.distributed.algorithms.ddp_comm_hooks.debugging_hooks import noop_hook
from torch.nn import Module
from torch.nn.parallel import DistributedDataParallel
from torch.optim import Optimizer
from torch.utils.data import DataLoader
from typing_extensions import override
from nemo.lightning import _strategy_lib
from nemo.lightning.fabric.conversion import to_fabric
from nemo.lightning.io.pl import MegatronCheckpointIO, ckpt_to_weights_subdir
from nemo.lightning.megatron_parallel import CallbackConnector, MegatronParallel
from nemo.lightning.pytorch.strategies import MegatronStrategy
from nemo.utils.import_utils import safe_import
from nemo.utils.model_utils import unwrap_model
mto, HAVE_MODELOPT = safe_import("modelopt.torch.opt")
if TYPE_CHECKING:
from nemo.lightning.pytorch.plugins.data_sampler import DataSampler
DDPLiteral = Literal["megatron", "pytorch"]
class FabricMegatronStrategy(DDPStrategy):
"""
Fabric strategy for Megatron.
"""
def __init__(
self,
tensor_model_parallel_size: int = 1,
pipeline_model_parallel_size: int = 1,
virtual_pipeline_model_parallel_size: Optional[int] = None,
pipeline_model_parallel_comm_backend: str = None,
microbatch_group_size_per_vp_stage: Optional[int] = None,
context_parallel_size: int = 1,
sequence_parallel: bool = False,
expert_model_parallel_size: int = 1,
moe_extended_tp: bool = False,
expert_tensor_parallel_size: int = None,
encoder_tensor_model_parallel_size: Optional[int] = 0,
encoder_pipeline_model_parallel_size: Optional[int] = 0,
data_sampler: Optional["DataSampler"] = None,
accelerator: Optional[Accelerator] = None,
parallel_devices: Optional[List[torch.device]] = None,
cluster_environment: Optional[ClusterEnvironment] = None,
checkpoint_io: Optional[CheckpointIO] = None,
precision: Optional[Precision] = None,
megatron_callbacks: Optional[CallbackConnector] = None,
ddp: Union[DDPLiteral, DistributedDataParallelConfig] = "megatron",
process_group_backend: Optional[str] = None,
timeout: Optional[timedelta] = default_pg_timeout,
start_method: Literal["popen", "spawn", "fork", "forkserver"] = "popen",
no_ddp_communication_hook: bool = True,
output_data_idx: bool = False,
pipeline_dtype: Optional[torch.dtype] = None,
init_model_parallel: bool = True,
use_tp_pp_dp_mapping: bool = False,
num_distributed_optimizer_instances: int = 1,
nccl_communicator_config_path: Optional[str] = None,
**kwargs: Any,
) -> None:
super().__init__(
accelerator=accelerator,
parallel_devices=parallel_devices,
cluster_environment=cluster_environment,
checkpoint_io=checkpoint_io,
precision=precision,
process_group_backend=process_group_backend,
timeout=timeout,
start_method=start_method,
**kwargs,
)
self.megatron_callbacks = CallbackConnector()
self.data_sampler: Optional['DataSampler'] = data_sampler
self.tensor_model_parallel_size = tensor_model_parallel_size
self.pipeline_model_parallel_size = pipeline_model_parallel_size
self.pipeline_model_parallel_comm_backend = pipeline_model_parallel_comm_backend
self.microbatch_group_size_per_vp_stage = (
microbatch_group_size_per_vp_stage
if microbatch_group_size_per_vp_stage is not None
else pipeline_model_parallel_size
)
self.context_parallel_size = context_parallel_size
self.expert_model_parallel_size = expert_model_parallel_size
self.expert_tensor_parallel_size = expert_tensor_parallel_size
self.moe_extended_tp = moe_extended_tp
self.virtual_pipeline_model_parallel_size = virtual_pipeline_model_parallel_size
self.sequence_parallel = sequence_parallel
self.encoder_tensor_model_parallel_size = encoder_tensor_model_parallel_size
self.encoder_pipeline_model_parallel_size = encoder_pipeline_model_parallel_size
self.pipeline_dtype = pipeline_dtype
self._init_model_parallel = init_model_parallel
self.use_tp_pp_dp_mapping = use_tp_pp_dp_mapping
self.num_distributed_optimizer_instances = num_distributed_optimizer_instances
self.nccl_communicator_config_path = nccl_communicator_config_path
self.no_ddp_communication_hook = no_ddp_communication_hook
self.megatron_callbacks = CallbackConnector()
if megatron_callbacks:
self.megatron_callbacks.add(megatron_callbacks)
self.output_data_idx = output_data_idx
self.data_sampler: Optional["DataSampler"] = data_sampler
# used in NVIDIA NGC PyTorch containers
_strategy_lib.enable_nvidia_optimizations()
self._ddp = ddp
if ddp == "megatron":
self.ddp_config = DistributedDataParallelConfig()
elif isinstance(ddp, DistributedDataParallelConfig):
self.ddp_config = ddp
elif ddp == "pytorch":
self.ddp_config = None
self.no_ddp_communication_hook = False
else:
raise ValueError(f"Invalid DDP type: {ddp}")
@override
def _setup_distributed(self) -> None:
self._set_world_ranks()
assert self.cluster_environment is not None
_strategy_lib.init_parallel_ranks(
world_size=self.cluster_environment.world_size(),
global_rank=self.cluster_environment.global_rank(),
local_rank=self.cluster_environment.local_rank(),
parallel_config=self.parallelism,
)
super()._setup_distributed()
torch.cuda.set_device(self.cluster_environment.local_rank())
# TODO: Fix this:
# if self.data_config is not None:
# _strategy_lib.initialize_data(self.cluster_environment.global_rank(), self.data_config)
_strategy_lib.init_model_parallel()
def process_datamodule(self, datamodule: LightningDataModule) -> LightningDataModule:
"""
Process the datamodule.
"""
datamodule.setup()
if not self.data_sampler and hasattr(datamodule, "data_sampler"):
self.data_sampler = datamodule.data_sampler
if self.data_sampler:
self.data_sampler.setup(self.cluster_environment.global_rank())
return datamodule
@override
def process_dataloader(self, dataloader: DataLoader) -> Iterator:
"""
Process the dataloader. Returns an iterator.
"""
if self.data_sampler:
dataloader = self.data_sampler.transform_dataloader(dataloader)
# Code taken from:
# https://github.com/Lightning-AI/pytorch-lightning
# /blob/6cbe9ceb560d798892bdae9186291acf9bf5d2e3/src/lightning/pytorch/loops/fit_loop.py
# L258-L260
output = _MegatronDataLoaderIterDataFetcher(output_data_idx=self.output_data_idx)
output.setup(CombinedLoader(dataloader, "max_size_cycle"))
iter(output)
return output
def setup_megatron_optimizer(
self,
model: MegatronParallel,
optimizer_config: OptimizerConfig,
no_weight_decay_cond: Optional[Callable] = None,
scale_lr_cond: Optional[Callable] = None,
lr_mult: float = 1.0,
) -> Optimizer:
"""
Setup the Megatron optimizer.
"""
if hasattr(self.precision, "convert_config"):
optimizer_config = self.precision.convert_config(optimizer_config)
assert optimizer_config.lr is not None, "Learning rate must be set in optimizer config"
return _strategy_lib.setup_megatron_optimizer(
model,
optimizer_config,
no_weight_decay_cond=no_weight_decay_cond,
scale_lr_cond=scale_lr_cond,
lr_mult=lr_mult,
)
@override
def setup_optimizer(self, optimizer: Optimizer) -> Optimizer:
"""Pass the optimizer to the precision-plugin if needed & add it as callback."""
if hasattr(self._precision, "setup_optimizer"):
optimizer = self._precision.setup_optimizer(optimizer)
self.megatron_callbacks.add(optimizer)
return optimizer
@override
def setup_module(self, module: Module) -> MegatronParallel:
"""
Setup the torch module. Returns a MegatronParallel object.
"""
from megatron.core.utils import get_model_config
_strategy_lib.set_model_parallel_attributes(module, self.parallelism)
convert_module_fn = None
if hasattr(self.precision, "convert_module"):
convert_module_fn = self.precision.convert_module
if hasattr(self.precision, "convert_config"):
self.precision.convert_config(get_model_config(module))
if self.ddp_config:
self.precision.convert_config(self.ddp_config)
# Call configure_model if it's overridden (relevant for LightningModules with lazy initialization)
if hasattr(module, "configure_model"):
module.configure_model()
megatron_parallel = MegatronParallel(
module,
precision_plugin=self.precision,
vp_size=self.virtual_pipeline_model_parallel_size,
cpu=isinstance(self.accelerator, CPUAccelerator),
ddp_config=self.ddp_config,
convert_module_fn=convert_module_fn,
)
if self._init_model_parallel:
megatron_parallel.init_model_parallel()
if self.data_sampler:
megatron_parallel.callbacks.add(self.data_sampler)
if not self.ddp_config:
from megatron.core import mpu
from nemo.utils import AppState
app_state = AppState()
if app_state.model_parallel_size is not None:
self._ddp_kwargs["process_group"] = mpu.get_data_parallel_group()
dist_data_parallel = super().setup_module(megatron_parallel)
if self.no_ddp_communication_hook:
# When using custom gradient accumulation and allreduce, disable
# DDP communication hook that works on the gradient bucket.
# Instead, use the custom gradient function and communication hook,
# which is defined in the master optimizer wrapper.
dist_data_parallel.require_backward_grad_sync = False
dist_data_parallel.register_comm_hook(None, noop_hook)
return dist_data_parallel
return megatron_parallel
def module_init_context(self, empty_init: Optional[bool] = None) -> ContextManager:
"""
Get the context manager used for initializing the module.
"""
precision_init_ctx = self.precision.module_init_context()
module_sharded_ctx = self.megatron_context()
stack = ExitStack()
if empty_init:
# Materialization happens in `setup`. When modules get wrapped by FSDP, the sequence of operations is:
# 1) materialize module 2) call `reset_parameters()` 3) shard the module.
# These operations are applied to each submodule 'bottom up' in the module hierarchy.
stack.enter_context(torch.device("meta"))
stack.enter_context(precision_init_ctx)
stack.enter_context(module_sharded_ctx)
return stack
def module_to_device(self, module: nn.Module) -> None:
"""
Move the module to the device.
"""
pass
@override
def save_checkpoint(
self,
path: _PATH,
state: Dict[str, Union[Module, Optimizer, Any]],
storage_options: Optional[Any] = None,
filter_dict: Optional[Dict[str, Callable[[str, Any], bool]]] = None,
) -> None:
"""Save model, optimizer, and other state as a checkpoint file.
Args:
path: A path to where the file(s) should be saved
state: A dictionary with contents to be saved. If the dict contains modules or optimizers, their
state-dict will be retrieved and converted automatically.
storage_options: Additional options for the ``CheckpointIO`` plugin
filter: An optional dictionary containing filter callables that return a boolean indicating whether the
given item should be saved (``True``) or filtered out (``False``). Each filter key should match a
state key, where its filter will be applied to the ``state_dict`` generated.
"""
if not storage_options:
storage_options = {}
storage_options['content_metadata'] = self.sharded_state_dict_metadata
state = self._convert_stateful_objects_in_state(state, filter=(filter_dict or {}))
self.checkpoint_io.save_checkpoint(checkpoint=state, path=path, storage_options=storage_options)
def load_checkpoint(
self,
path: _PATH,
state: Optional[Union[Module, Optimizer, Dict[str, Union[Module, Optimizer, Any]]]] = None,
strict: bool = True,
) -> Dict[str, Any]:
"""
Load the checkpoint.
"""
if isinstance(state, Optimizer):
raise NotImplementedError("Optimizer loading is not supported, pass it as a dict including the model")
unwrapped_model = unwrap_model(state["state_dict"])
from nemo.collections.vlm.llama4.model.base import Llama4OmniBaseModel
if HAVE_MODELOPT and isinstance(unwrapped_model, Llama4OmniBaseModel):
# If present, first restore and modify the model according to the ModelOpt state.
# Avoid quantizers being added to teacher model if model is a distillation model.
core_model = unwrapped_model.language_model
with core_model.hide_teacher_model() if hasattr(core_model, "hide_teacher_model") else nullcontext():
mto.plugins.restore_sharded_modelopt_state(
[core_model], ckpt_to_weights_subdir(path, is_saving=False), prefix="module.language_model."
)
if mto.ModeloptStateManager.is_converted(core_model):
print("Restored Model-Optimizer state from checkpoint.")
torch.cuda.empty_cache()
# After dist_checkpointing.load, sharded tensors will be replaced with tensors
sharded_sd_metadata = self.unwrapped_checkpoint_io.load_content_metadata(path)
sharded_state_dict = {}
if isinstance(state, Module):
sharded_state_dict["state_dict"] = state.sharded_state_dict(metadata=sharded_sd_metadata)
elif strict:
if isinstance(state['state_dict'], DistributedDataParallel):
state["state_dict"] = state['state_dict'].module
sharded_state_dict["state_dict"] = state["state_dict"].sharded_state_dict(metadata=sharded_sd_metadata)
if "optimizer" in state:
sharded_state_dict["optimizer"] = _strategy_lib.optimizer_sharded_state_dict(
state["state_dict"],
state["optimizer"],
is_loading=True,
metadata=sharded_sd_metadata,
)
else:
for obj in state.items():
if isinstance(obj, Module):
sharded_state_dict["state_dict"] = obj.sharded_state_dict(metadata=sharded_sd_metadata)
elif isinstance(obj, Optimizer):
sharded_state_dict["optimizer"] = _strategy_lib.optimizer_sharded_state_dict(
obj, is_loading=True, metadata=sharded_sd_metadata
)
checkpoint = self.checkpoint_io.load_checkpoint(path, sharded_state_dict=sharded_state_dict)
if isinstance(state, Module):
self.load_module_state_dict(module=state, state_dict=checkpoint, strict=strict)
return {}
_validate_keys_for_strict_loading(state.keys(), checkpoint.keys(), strict=strict)
for name, obj in state.copy().items():
if name not in checkpoint:
continue
if isinstance(obj, _Stateful):
if isinstance(obj, Module):
self.load_module_state_dict(module=obj, state_dict=checkpoint.pop(name), strict=strict)
else:
obj.load_state_dict(checkpoint.pop(name))
else:
state[name] = checkpoint.pop(name)
return checkpoint
@override
def load_module_state_dict(
self, module: Module, state_dict: Dict[str, Union[Any, Tensor]], strict: bool = True
) -> None:
"""
Load the module state dict.
"""
_strategy_lib.load_model_state_dict(module, state_dict, strict=strict)
@property
def sharded_state_dict_metadata(self):
"""Metadata used for sharded_state_dict generation during checkpoint save."""
metadata = {}
metadata['singleton_local_shards'] = False
metadata['chained_optim_avoid_prefix'] = True
if isinstance(self.ddp_config, DistributedDataParallelConfig) and self.ddp_config.use_distributed_optimizer:
metadata['distrib_optim_sharding_type'] = 'dp_reshardable'
return metadata
@contextmanager
def megatron_context(self) -> Generator[None, None, None]:
"""
Context manager for Megatron.
"""
from megatron.core.extensions import transformer_engine as _te
original = _te._get_extra_te_kwargs # noqa: SLF001
def _get_extra_te_kwargs_meta(c):
"""Forces device to meta"""
kwargs = original(c)
kwargs['device'] = 'meta'
return kwargs
_te._get_extra_te_kwargs = _get_extra_te_kwargs_meta # noqa: SLF001
_orig_perform_initialization = self.parallelism.perform_initialization
_orig_use_cpu_initialization = self.parallelism.use_cpu_initialization
self.parallelism.perform_initialization = False
self.parallelism.use_cpu_initialization = True
yield
_te._get_extra_te_kwargs = original # noqa: SLF001
self.parallelism.perform_initialization = _orig_perform_initialization
self.parallelism.use_cpu_initialization = _orig_use_cpu_initialization
@property
@override
def checkpoint_io(self) -> CheckpointIO:
"""
Get the checkpoint IO.
"""
if self._checkpoint_io is None:
self._checkpoint_io = MegatronCheckpointIO()
elif isinstance(self._checkpoint_io, _WrappingCheckpointIO):
self._checkpoint_io.checkpoint_io = MegatronCheckpointIO()
return self._checkpoint_io
@property
def unwrapped_checkpoint_io(self) -> CheckpointIO:
"""Unwraps `checkpoint_io` from all wrappers."""
checkpoint_io = self.checkpoint_io
while isinstance(checkpoint_io, _WrappingCheckpointIO):
checkpoint_io = checkpoint_io.checkpoint_io
return checkpoint_io
@property
def parallelism(self):
"""
Get the parallelism config.
"""
from nemo.lightning.pytorch.strategies.megatron_strategy import ParallelismConfig
return ParallelismConfig(
tensor_model_parallel_size=self.tensor_model_parallel_size,
pipeline_model_parallel_size=self.pipeline_model_parallel_size,
pipeline_model_parallel_comm_backend=self.pipeline_model_parallel_comm_backend,
virtual_pipeline_model_parallel_size=self.virtual_pipeline_model_parallel_size,
microbatch_group_size_per_vp_stage=self.microbatch_group_size_per_vp_stage,
context_parallel_size=self.context_parallel_size,
sequence_parallel=self.sequence_parallel,
expert_model_parallel_size=self.expert_model_parallel_size,
expert_tensor_parallel_size=self.expert_tensor_parallel_size,
moe_extended_tp=self.moe_extended_tp,
encoder_tensor_model_parallel_size=self.encoder_tensor_model_parallel_size,
encoder_pipeline_model_parallel_size=self.encoder_pipeline_model_parallel_size,
pipeline_dtype=self.pipeline_dtype,
use_tp_pp_dp_mapping=self.use_tp_pp_dp_mapping,
num_distributed_optimizer_instances=self.num_distributed_optimizer_instances,
nccl_communicator_config_path=self.nccl_communicator_config_path,
)
# TODO: Fix this
class _MegatronDataLoaderIterDataFetcher(_DataFetcher):
def __init__(self, *args: Any, output_data_idx: bool = False, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
self.output_data_idx = output_data_idx
self._batch: Any = None
self._batch_idx: int = 0
self._dataloader_idx: int = 0
def __iter__(self) -> "_MegatronDataLoaderIterDataFetcher":
super().__iter__()
self.iterator_wrapper = iter(_DataFetcherWrapper(self, output_data_idx=self.output_data_idx))
return self
def __next__(self) -> Iterator["_DataFetcherWrapper"]: # type: ignore[override]
if self.done:
raise StopIteration
return self.iterator_wrapper
def reset(self) -> None:
"""
Reset the data fetcher.
"""
super().reset()
self._batch = None
self._batch_idx = 0
self._dataloader_idx = 0
class _DataFetcherWrapper(Iterator):
def __init__(
self,
data_fetcher: _MegatronDataLoaderIterDataFetcher,
output_data_idx: bool = False,
) -> None:
self.data_fetcher = data_fetcher
self.output_data_idx = output_data_idx
@property
def done(self) -> bool:
"""
Check if the data fetcher is done.
"""
return self.data_fetcher.done
@property
def fetched(self) -> int:
"""
Check if the data fetcher is fetched.
"""
return self.data_fetcher.fetched
@property
def length(self) -> Optional[int]:
"""
Get the length of the data fetcher.
"""
return self.data_fetcher.length
@property
def data_config(self):
"""
Get the data config.
"""
return self.data_fetcher.data_config
def __next__(self):
fetcher = self.data_fetcher
if fetcher.done:
raise StopIteration
batch, batch_idx, dataloader_idx = super(_MegatronDataLoaderIterDataFetcher, fetcher).__next__()
# save the state so the loops can access it
fetcher._batch = batch # noqa: SLF001
fetcher._batch_idx = batch_idx # noqa: SLF001
fetcher._dataloader_idx = dataloader_idx # noqa: SLF001
if not self.output_data_idx:
return batch
return batch, batch_idx, dataloader_idx
@to_fabric.register(MegatronStrategy)
def convert_megatron_strategy(strategy: MegatronStrategy) -> FabricMegatronStrategy:
"""
Convert the Megatron strategy to the Fabric strategy.
"""
return FabricMegatronStrategy(
tensor_model_parallel_size=strategy.tensor_model_parallel_size,
pipeline_model_parallel_size=strategy.pipeline_model_parallel_size,
pipeline_model_parallel_comm_backend=strategy.pipeline_model_parallel_comm_backend,
virtual_pipeline_model_parallel_size=strategy.virtual_pipeline_model_parallel_size,
microbatch_group_size_per_vp_stage=strategy.microbatch_group_size_per_vp_stage,
context_parallel_size=strategy.context_parallel_size,
sequence_parallel=strategy.sequence_parallel,
expert_model_parallel_size=strategy.expert_model_parallel_size,
expert_tensor_parallel_size=strategy.expert_tensor_parallel_size,
moe_extended_tp=strategy.moe_extended_tp,
encoder_tensor_model_parallel_size=strategy.encoder_tensor_model_parallel_size,
encoder_pipeline_model_parallel_size=strategy.encoder_pipeline_model_parallel_size,
pipeline_dtype=strategy.pipeline_dtype,
use_tp_pp_dp_mapping=strategy.use_tp_pp_dp_mapping,
ddp=strategy._ddp,
process_group_backend=strategy.process_group_backend,
timeout=strategy._timeout,
start_method=strategy._start_method,
)
|