Spaces:
Runtime error
Runtime error
File size: 25,378 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import numpy as np
import torch
from nemo.utils import AppState, logging
try:
from apex.transformer.log_util import set_logging_level
HAVE_APEX = True
except (ImportError, ModuleNotFoundError):
HAVE_APEX = False
try:
from megatron.core import tensor_parallel
from megatron.core.parallel_state import (
RankGenerator,
get_pipeline_model_parallel_rank,
set_expert_model_parallel_rank,
set_expert_model_parallel_world_size,
set_pipeline_model_parallel_rank,
set_pipeline_model_parallel_world_size,
set_tensor_model_parallel_rank,
set_tensor_model_parallel_world_size,
)
HAVE_MEGATRON_CORE = True
except (ImportError, ModuleNotFoundError):
HAVE_MEGATRON_CORE = False
try:
from megatron.core.num_microbatches_calculator import (
ConstantNumMicroBatchesCalculator,
get_current_global_batch_size,
get_micro_batch_size,
get_num_microbatches,
init_num_microbatches_calculator,
)
MCORE_MB_CALCULATOR = True
except (ImportError, ModuleNotFoundError):
logging.warning("Megatron num_microbatches_calculator not found, using Apex version.")
if HAVE_APEX:
from apex.transformer.microbatches import ConstantNumMicroBatches as ConstantNumMicroBatchesCalculator
from apex.transformer.pipeline_parallel.utils import (
get_current_global_batch_size,
get_micro_batch_size,
get_num_microbatches,
)
from apex.transformer.pipeline_parallel.utils import (
setup_microbatch_calculator as init_num_microbatches_calculator,
)
MCORE_MB_CALCULATOR = False
def initialize_model_parallel_for_nemo(
world_size,
global_rank,
local_rank,
tensor_model_parallel_size=1,
expert_model_parallel_size=1,
expert_tensor_parallel_size=None,
pipeline_model_parallel_size=1,
virtual_pipeline_model_parallel_size=None,
pipeline_model_parallel_split_rank=None,
pipeline_model_parallel_comm_backend=None,
context_parallel_size=1,
encoder_tensor_model_parallel_size=0,
encoder_pipeline_model_parallel_size=0,
micro_batch_size=None,
global_batch_size=None,
rampup_batch_size=None,
use_fp8=False,
init_mpi_proc_group=False,
seed=1234,
apex_transformer_log_level=30,
use_tp_pp_dp_mapping=False,
use_te_rng_tracker=False,
num_distributed_optimizer_instances=1,
nccl_communicator_config_path=None,
use_sharp=False,
use_gloo_process_groups: bool = True,
):
"""Initialize model parallel groups in NeMo."""
assert (
pipeline_model_parallel_split_rank is None or pipeline_model_parallel_split_rank == 0
), "pipeline_model_parallel_split_rank is deprecated."
assert encoder_pipeline_model_parallel_size == 0 and (
encoder_tensor_model_parallel_size == 0 or encoder_tensor_model_parallel_size == tensor_model_parallel_size
), (
"encoder_pipeline_model_parallel_size is temporarily "
"unavailable. We are working on a refactoring to add it back."
)
# updating NeMo globals
app_state = AppState()
app_state.global_rank = global_rank
app_state.world_size = world_size
app_state.local_rank = local_rank
app_state.use_tp_pp_dp_mapping = use_tp_pp_dp_mapping
app_state.expert_model_parallel_size = expert_model_parallel_size
app_state.tensor_model_parallel_size = tensor_model_parallel_size
app_state.pipeline_model_parallel_size = pipeline_model_parallel_size
app_state.virtual_pipeline_model_parallel_size = virtual_pipeline_model_parallel_size
app_state.context_parallel_size = context_parallel_size
app_state.encoder_tensor_model_parallel_size = encoder_tensor_model_parallel_size
app_state.encoder_pipeline_model_parallel_size = encoder_pipeline_model_parallel_size
app_state.pipeline_model_parallel_comm_backend = pipeline_model_parallel_comm_backend
app_state.use_fp8 = use_fp8
app_state.use_sharp = use_sharp
app_state.init_mpi_proc_group = init_mpi_proc_group
app_state.expert_tensor_parallel_size = expert_tensor_parallel_size
app_state.num_distributed_optimizer_instances = num_distributed_optimizer_instances
app_state.nccl_communicator_config_path = nccl_communicator_config_path
app_state.use_gloo_process_groups = use_gloo_process_groups
(
app_state.tensor_model_parallel_rank,
app_state.pipeline_model_parallel_rank,
app_state.expert_model_parallel_rank,
app_state.expert_tensor_parallel_rank,
app_state.model_parallel_size,
app_state.data_parallel_size,
app_state.pipeline_model_parallel_split_rank,
app_state.virtual_pipeline_model_parallel_rank,
) = fake_initialize_model_parallel(
world_size=world_size,
rank=global_rank,
tensor_model_parallel_size_=tensor_model_parallel_size,
pipeline_model_parallel_size_=pipeline_model_parallel_size,
virtual_pipeline_model_parallel_size_=virtual_pipeline_model_parallel_size,
pipeline_model_parallel_split_rank_=pipeline_model_parallel_split_rank,
context_parallel_size_=context_parallel_size,
expert_model_parallel_size_=expert_model_parallel_size,
expert_tensor_parallel_size_=expert_tensor_parallel_size,
encoder_tensor_model_parallel_size_=encoder_tensor_model_parallel_size,
encoder_pipeline_model_parallel_size_=encoder_pipeline_model_parallel_size,
use_tp_pp_dp_mapping=use_tp_pp_dp_mapping,
)
# update apex.transformer globals
set_tensor_model_parallel_world_size(app_state.tensor_model_parallel_size)
set_tensor_model_parallel_rank(app_state.tensor_model_parallel_rank)
set_expert_model_parallel_world_size(app_state.expert_model_parallel_size)
set_expert_model_parallel_rank(app_state.expert_model_parallel_rank)
set_pipeline_model_parallel_world_size(
app_state.pipeline_model_parallel_size + app_state.encoder_pipeline_model_parallel_size
)
set_pipeline_model_parallel_rank(app_state.pipeline_model_parallel_rank)
tensor_parallel.random.initialize_rng_tracker(use_te_rng_tracker=use_te_rng_tracker)
if seed is not None:
# @chcui not setting seed is for model conversion. always set seed for training/inference.
_set_random_seed(seed)
if global_batch_size and micro_batch_size is not None:
# TODO: add rampup_batch_size here when we have it implemented
if MCORE_MB_CALCULATOR:
from megatron.core.num_microbatches_calculator import _GLOBAL_NUM_MICROBATCHES_CALCULATOR
if _GLOBAL_NUM_MICROBATCHES_CALCULATOR is None:
init_num_microbatches_calculator(
rank=global_rank,
global_batch_size=global_batch_size,
micro_batch_size=micro_batch_size,
data_parallel_size=app_state.data_parallel_size,
rampup_batch_size=rampup_batch_size,
decrease_batch_size_if_needed=False,
)
else:
if isinstance(_GLOBAL_NUM_MICROBATCHES_CALCULATOR, ConstantNumMicroBatchesCalculator):
assert get_current_global_batch_size() == global_batch_size
assert get_micro_batch_size() == micro_batch_size
assert get_num_microbatches() == global_batch_size // (
micro_batch_size * app_state.data_parallel_size
)
else:
raise Exception("Microbatch calculator already initialized.")
else:
from apex.transformer.pipeline_parallel.utils import _GLOBAL_NUM_MICROBATCHES_CALCULATOR
if _GLOBAL_NUM_MICROBATCHES_CALCULATOR is None:
init_num_microbatches_calculator(
rank=global_rank,
global_batch_size=global_batch_size,
micro_batch_size=micro_batch_size,
data_parallel_size=app_state.data_parallel_size,
rampup_batch_size=rampup_batch_size,
decrease_batch_size_if_needed=False,
)
else:
if isinstance(_GLOBAL_NUM_MICROBATCHES_CALCULATOR, ConstantNumMicroBatchesCalculator):
assert get_current_global_batch_size() == global_batch_size
assert get_micro_batch_size() == micro_batch_size
assert get_num_microbatches() == global_batch_size // (
micro_batch_size * app_state.data_parallel_size
)
else:
raise Exception("Microbatch calculator already initialized.")
app_state._is_megatron_initialized = True
if HAVE_APEX:
set_logging_level(apex_transformer_log_level)
def _set_random_seed(seed_):
"""Set random seed for reproducability."""
if seed_ is not None and seed_ > 0:
# Ensure that different pipeline MP stages get different seeds.
seed = seed_ + (100 * get_pipeline_model_parallel_rank())
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.device_count() > 0:
tensor_parallel.model_parallel_cuda_manual_seed(seed)
else:
raise ValueError('Seed ({}) should be a positive integer.'.format(seed_))
def set_jit_fusion_options():
"""Set PyTorch JIT layer fusion options."""
# set flags if we are using the 21.10 container
if torch.__version__ == "1.10.0a0+0aef44c":
# nvfuser
torch._C._jit_set_profiling_executor(True)
torch._C._jit_set_profiling_mode(True)
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_override_can_fuse_on_gpu(False)
torch._C._jit_set_texpr_fuser_enabled(False)
torch._C._jit_set_nvfuser_enabled(True)
torch._C._debug_set_autodiff_subgraph_inlining(False)
def fake_initialize_model_parallel(
world_size,
rank,
tensor_model_parallel_size_,
pipeline_model_parallel_size_,
pipeline_model_parallel_split_rank_=None,
virtual_pipeline_model_parallel_size_=None,
expert_model_parallel_size_=1,
expert_tensor_parallel_size_=None,
context_parallel_size_=1,
encoder_tensor_model_parallel_size_=0,
encoder_pipeline_model_parallel_size_=0,
use_tp_pp_dp_mapping=False,
):
"""
Fake initialize model data parallel groups so that we can instantiate model parallel
models before DDP is initialized. This is needed because PTL execution flow is init
model, init trainer -> call trainer.fit(model). DDP is initialized during .fit.
This function is taken from megatron.core.parallel_state and modified so that the
distributed groups are not created.
We only need the tensor parallel and pipeline parallel ranks to instantiate the model.
Arguments:
tensor_model_parallel_size: number of GPUs used to parallelize model tensor.
pipeline_model_parallel_size: number of GPUs used to parallelize model pipeline.
context_parallel_size: number of GPUs used to parallelize tokens of each input.
Let's say we have a total of 16 GPUs denoted by g0 ... g15 and we
use 2 GPUs to parallelize the model tensor, and 4 GPUs to parallelize
the model pipeline. The present function will
create 8 tensor model-parallel groups, 4 pipeline model-parallel groups
and 8 data-parallel groups as:
8 data_parallel groups:
[g0, g2], [g1, g3], [g4, g6], [g5, g7], [g8, g10], [g9, g11], [g12, g14], [g13, g15]
8 tensor model-parallel groups:
[g0, g1], [g2, g3], [g4, g5], [g6, g7], [g8, g9], [g10, g11], [g12, g13], [g14, g15]
4 pipeline model-parallel groups:
[g0, g4, g8, g12], [g1, g5, g9, g13], [g2, g6, g10, g14], [g3, g7, g11, g15]
Note that for efficiency, the caller should make sure adjacent ranks
are on the same DGX box. For example if we are using 2 DGX-1 boxes
with a total of 16 GPUs, rank 0 to 7 belong to the first box and
ranks 8 to 15 belong to the second box.
"""
assert pipeline_model_parallel_split_rank_ is None, "pipeline_model_parallel_split_rank is deprecated."
assert encoder_pipeline_model_parallel_size_ == 0 and (
encoder_tensor_model_parallel_size_ == 0 or encoder_tensor_model_parallel_size_ == tensor_model_parallel_size_
), (
"encoder_pipeline_model_parallel_size is temporarily "
"unavailable. We are working on a refactoring to add it back."
)
# Get world size and rank. Ensure some consistencies.
tensor_model_parallel_size = min(tensor_model_parallel_size_, world_size)
pipeline_model_parallel_size = min(pipeline_model_parallel_size_, world_size)
model_parallel_size = tensor_model_parallel_size * pipeline_model_parallel_size
context_parallel_size = min(context_parallel_size_, world_size)
if encoder_pipeline_model_parallel_size_ is None:
encoder_pipeline_model_parallel_size = 0
else:
encoder_pipeline_model_parallel_size = encoder_pipeline_model_parallel_size_
if encoder_tensor_model_parallel_size_ == 0 and encoder_pipeline_model_parallel_size_ > 0:
encoder_tensor_model_parallel_size = tensor_model_parallel_size
else:
encoder_tensor_model_parallel_size = encoder_tensor_model_parallel_size_
if encoder_tensor_model_parallel_size > 0:
assert encoder_pipeline_model_parallel_size > 0
assert (
encoder_tensor_model_parallel_size <= tensor_model_parallel_size
), "We do not support encoders with more TP than the decoder."
encoder_model_size = (
encoder_tensor_model_parallel_size * encoder_pipeline_model_parallel_size * context_parallel_size
)
decoder_model_size = tensor_model_parallel_size * pipeline_model_parallel_size * context_parallel_size
total_model_size = encoder_model_size + decoder_model_size
assert world_size % total_model_size == 0, (
f'world_size: {world_size} must be divisible by total world_size: '
f'(decoder_)tensor_model_parallel_size {tensor_model_parallel_size} '
f'* (decoder_)pipeline_model_parallel_size {pipeline_model_parallel_size} '
f'* (decoder_)context_parallel_size {context_parallel_size} + '
f'encoder_tensor_model_parallel_size {encoder_tensor_model_parallel_size} '
f'* encoder_pipeline_model_parallel_size {encoder_pipeline_model_parallel_size} '
f'* context_parallel_size {context_parallel_size}'
)
data_parallel_size = world_size // total_model_size
encoder_world_size = encoder_model_size * data_parallel_size
decoder_world_size = decoder_model_size * data_parallel_size
assert encoder_world_size + decoder_world_size == world_size
virtual_pipeline_model_parallel_rank = None
if virtual_pipeline_model_parallel_size_ is not None:
virtual_pipeline_model_parallel_rank = 0
if encoder_world_size > 0:
encoder_rank_generator = RankGenerator(
tp=encoder_tensor_model_parallel_size,
ep=1,
dp=data_parallel_size,
pp=encoder_pipeline_model_parallel_size,
cp=context_parallel_size,
order='tp-cp-ep-pp-dp' if use_tp_pp_dp_mapping else 'tp-cp-ep-dp-pp',
rank_offset=0,
)
else:
encoder_rank_generator = None
decoder_rank_generator = RankGenerator(
tp=tensor_model_parallel_size,
ep=1,
dp=data_parallel_size,
pp=pipeline_model_parallel_size,
cp=context_parallel_size,
order='tp-cp-ep-pp-dp' if use_tp_pp_dp_mapping else 'tp-cp-ep-dp-pp',
rank_offset=encoder_world_size,
)
# Build expert rank generator
if expert_tensor_parallel_size_ is None:
expert_tensor_parallel_size_ = tensor_model_parallel_size
expert_tensor_model_pipeline_parallel_size = (
expert_tensor_parallel_size_ * expert_model_parallel_size_ * pipeline_model_parallel_size
)
expert_data_parallel_size = decoder_world_size // expert_tensor_model_pipeline_parallel_size
if decoder_world_size % expert_tensor_model_pipeline_parallel_size != 0:
raise RuntimeError(
f"decoder world_size ({decoder_world_size}) is not divisible by "
f"expert_tensor_model_pipeline_parallel size ({expert_tensor_model_pipeline_parallel_size})"
)
expert_decoder_rank_generator = RankGenerator(
tp=expert_tensor_parallel_size_,
ep=expert_model_parallel_size_,
dp=expert_data_parallel_size,
pp=pipeline_model_parallel_size,
cp=1,
order='tp-cp-ep-pp-dp' if use_tp_pp_dp_mapping else 'tp-cp-ep-dp-pp',
rank_offset=encoder_world_size,
)
assert (
not use_tp_pp_dp_mapping
or pipeline_model_parallel_size == 1
or expert_data_parallel_size == data_parallel_size
), "When not using pp-last rank ordering, the data parallel size of the attention and moe layers must be the same"
assert decoder_rank_generator.get_ranks("pp") == expert_decoder_rank_generator.get_ranks(
"pp"
), f"Pipeline parallel groups are expected to be the same for Non-Expert and Expert part, \
but got {decoder_rank_generator.get_ranks('pp')} and {expert_decoder_rank_generator.get_ranks('pp')}"
def generator_wrapper(group_type, is_expert=False, **kwargs):
from itertools import cycle
"""The `RankGenerator` class produces a hyper-rectangle for a given set of
tensor, pipeline, data, expert, and context parallelism. If we have an encoder,
in addition to the default decoder, we essentially instantiate two `RankGenerator`
classes to construct the parallelism for each module separately, and we then have
to stitch them together for the right groups. For now, this means pp and tp-pp."""
if is_expert:
d_ranks = expert_decoder_rank_generator.get_ranks(group_type, **kwargs)
else:
d_ranks = decoder_rank_generator.get_ranks(group_type, **kwargs)
if encoder_rank_generator is None:
for x in d_ranks:
yield x
return
e_ranks = encoder_rank_generator.get_ranks(group_type, **kwargs)
if group_type == 'pp':
# Map 1 encoder tp rank to several decoder tp ranks, because
# these won't be the same size.
for x, y in zip(cycle(e_ranks), d_ranks):
yield x + y
elif group_type == 'tp-pp':
# For this group, we can just return the concatenated
# groups together, because their sizes are the same.
assert len(e_ranks) == len(d_ranks)
for x, y in zip(e_ranks, d_ranks):
yield x + y
else:
for x in e_ranks:
yield x
for x in d_ranks:
yield x
# Build the data-parallel groups.
all_data_parallel_group_ranks_with_cp = []
for ranks in generator_wrapper('dp'):
if rank in ranks:
data_parallel_group = list(ranks)
logging.info(f'Rank {rank} has data parallel group : {data_parallel_group}')
for ranks_with_cp in generator_wrapper('dp-cp'):
all_data_parallel_group_ranks_with_cp.append(ranks_with_cp)
if rank in ranks_with_cp:
data_parallel_group_with_cp = ranks_with_cp
logging.info(
f'Rank {rank} has combined group of data parallel and context parallel : {data_parallel_group_with_cp}'
)
data_parallel_rank = data_parallel_group.index(rank)
logging.info(
f'All data parallel group ranks with context parallel combined: {all_data_parallel_group_ranks_with_cp}'
)
logging.info(f'Ranks {rank} has data parallel rank: {data_parallel_rank}')
# Build the context-parallel groups.
all_context_parallel_group_ranks = []
for ranks in generator_wrapper('cp'):
all_context_parallel_group_ranks.append(ranks)
if rank in ranks:
context_parallel_group = ranks
logging.info(f'Rank {rank} has context parallel group: {context_parallel_group}')
context_parallel_rank = context_parallel_group.index(rank)
logging.info(f'All context parallel group ranks: {all_context_parallel_group_ranks}')
logging.info(f'Ranks {rank} has context parallel rank: {context_parallel_rank}')
# Build the model-parallel groups.
all_model_parallel_group_ranks = []
for ranks in generator_wrapper('tp-pp'):
all_model_parallel_group_ranks.append(ranks)
if rank in ranks:
logging.info(f'Rank {rank} has model parallel group: {list(ranks)}')
logging.info(f'All model parallel group ranks: {all_model_parallel_group_ranks}')
# Build the tensor model-parallel groups.
all_tensor_model_parallel_group_ranks = []
tensor_model_parallel_group = None
for ranks in generator_wrapper('tp'):
all_tensor_model_parallel_group_ranks.append(ranks)
if rank in ranks:
tensor_model_parallel_group = ranks
logging.info(f'Rank {rank} has tensor model parallel group: {tensor_model_parallel_group}')
tensor_model_parallel_rank = tensor_model_parallel_group.index(rank)
logging.info(f'All tensor model parallel group ranks: {all_tensor_model_parallel_group_ranks}')
logging.info(f'Rank {rank} has tensor model parallel rank: {tensor_model_parallel_rank}')
# EP rank
expert_model_parallel_rank = 0
if expert_model_parallel_size_ is not None and expert_model_parallel_size_ > 1:
all_expert_model_parallel_ranks = []
for ranks in generator_wrapper('ep', is_expert=True):
all_expert_model_parallel_ranks.append(ranks)
if rank in ranks:
expert_model_parallel_rank = list(ranks).index(rank)
logging.info(f'All expert model parallel group ranks: {all_expert_model_parallel_ranks}')
logging.info(f'Rank {rank} has expert model parallel rank: {expert_model_parallel_rank}')
# ETP
expert_tensor_parallel_rank = 0
if expert_tensor_parallel_size_ is not None and expert_tensor_parallel_size_ > 1:
all_expert_tensor_parallel_ranks = []
for ranks in generator_wrapper('tp', is_expert=True):
all_expert_tensor_parallel_ranks.append(ranks)
if rank in ranks:
expert_tensor_parallel_rank = list(ranks).index(rank)
logging.info(f'All expert tensor parallel group ranks: {all_expert_tensor_parallel_ranks}')
logging.info(f'Rank {rank} has expert tensor parallel rank: {expert_tensor_parallel_rank}')
# Build the pipeline model-parallel groups and embedding groups
# (first and last rank in each pipeline model-parallel group).
all_pipeline_model_parallel_group_ranks = []
all_embedding_group_ranks = []
pipeline_model_parallel_group = None
embedding_group = None
embedding_rank = None
for ranks in generator_wrapper('pp'):
all_pipeline_model_parallel_group_ranks.append(ranks)
if rank in ranks:
pipeline_model_parallel_group = ranks
logging.info(f'Rank {rank} has pipeline model parallel group: {pipeline_model_parallel_group}')
# Setup embedding group (to exchange gradients between
# first and last stages).
if len(ranks) > 1:
embedding_ranks = [ranks[0], ranks[-1]]
all_embedding_group_ranks.append(embedding_ranks)
else:
embedding_ranks = ranks
all_embedding_group_ranks.append(list(embedding_ranks))
if rank in embedding_ranks:
embedding_group = list(embedding_ranks)
logging.info(f'Rank {rank} has embedding group: {embedding_group}')
pipeline_model_parallel_rank = pipeline_model_parallel_group.index(rank)
if embedding_group is not None:
embedding_rank = embedding_group.index(rank)
logging.info(f'All pipeline model parallel group ranks: {all_pipeline_model_parallel_group_ranks}')
logging.info(f'Rank {rank} has pipeline model parallel rank {pipeline_model_parallel_rank}')
logging.info(f'All embedding group ranks: {all_pipeline_model_parallel_group_ranks}')
logging.info(f'Rank {rank} has embedding rank: {embedding_rank}')
return (
tensor_model_parallel_rank,
pipeline_model_parallel_rank,
expert_model_parallel_rank,
expert_tensor_parallel_rank,
model_parallel_size,
data_parallel_size,
pipeline_model_parallel_split_rank_,
virtual_pipeline_model_parallel_rank,
)
|