Spaces:
Runtime error
Runtime error
File size: 14,200 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import time
from dataclasses import dataclass, field
from pathlib import Path
from typing import List, Optional, Union
import lightning.fabric as fl
import lightning.pytorch as pl
from lightning.pytorch.callbacks.model_checkpoint import ModelCheckpoint as PTLModelCheckpoint
from lightning.pytorch.loggers import Logger, TensorBoardLogger, WandbLogger
from nemo.lightning.io.mixin import IOMixin
from nemo.lightning.pytorch.callbacks import ModelCheckpoint
from nemo.utils import logging
from nemo.utils.app_state import AppState
from nemo.utils.import_utils import safe_import
lcp, HAVE_RES = safe_import('nvidia_resiliency_ext.ptl_resiliency.local_checkpoint_callback')
@dataclass
class NeMoLogger(IOMixin):
"""Logger for NeMo runs.
Args:
name (str): Name of the experiment.
log_dir (Optional[str]): Directory to save logs.
explicit_log_dir (Optional[str]): Explicit log directory.
version (Optional[str]): Version of the experiment.
use_datetime_version (bool): Whether to use datetime as version.
log_local_rank_0_only (bool): Log only on local rank 0.
log_global_rank_0_only (bool): Log only on global rank 0.
files_to_copy (Optional[List[str]]): List of files to copy to log directory.
update_logger_directory (bool): Whether to update logger directory to write to `exp_dir`.
If True, the `save_dir` passed to the logger will be reconfigured to write to `exp_dir / save_dir`.
This ensures that all output from an experiment is written to a common directory.
If False, the logger's save_dir will not be overwritten.
This argument applies only to TensorBoardLogger and WandbLogger instances.
ckpt (Optional[ModelCheckpoint]): Model checkpoint callback.
tensorboard: (Optional[TensorBoardLogger]): A PyTorch Lightning TensorBoardLogger instance
to add to the trainer.
wandb (Optional[WandbLogger]): A PyTorch Lightning WandBLogger instance
to add to the trainer.
extra_loggers(Optional[List[Logger]]): Any additional loggers to add to the trainer.
"""
name: str = "default"
log_dir: Optional[str] = None
explicit_log_dir: Optional[str] = None
version: Optional[str] = None
use_datetime_version: bool = True
log_local_rank_0_only: bool = False
log_global_rank_0_only: bool = False
files_to_copy: Optional[List[str]] = None
update_logger_directory: bool = True
ckpt: Optional[ModelCheckpoint] = None
tensorboard: Optional[TensorBoardLogger] = None
wandb: Optional[WandbLogger] = None
extra_loggers: List[Logger] = field(default_factory=list)
def __post_init__(self):
if self.log_local_rank_0_only is True and self.log_global_rank_0_only is True:
raise ValueError(
"Cannot set both log_local_rank_0_only and log_global_rank_0_only"
" to True. Please set either one or neither."
)
def setup(self, trainer: Union[pl.Trainer, fl.Fabric], resume_if_exists: bool = False, task_config=None):
"""Setup the logger for the experiment.
Args:
trainer (Union[pl.Trainer, fl.Fabric]): Trainer or Fabric instance.
resume_if_exists (bool): Whether to resume if log directory exists.
Returns:
AppState: The application state with updated log directory and other settings.
"""
from nemo.constants import NEMO_ENV_VARNAME_VERSION
from nemo.utils.get_rank import is_global_rank_zero
self.local_rank = trainer.local_rank
self.global_rank = trainer.global_rank
logging.rank = self.global_rank
# If explicit log_dir was passed, short circuit
if self.explicit_log_dir and isinstance(trainer, pl.Trainer):
if trainer.logger is not None and not self.update_logger_directory:
logging.warning(
(
"nemo logger received explicit_log_dir: {} and the pytorch lightning trainer "
"that was passed to nemo_logger container a logger, but "
"update_logger_directory is False. This means that the trainer's logger "
"directory may not match with the explicit_log_dir."
).format(
self.explicit_log_dir,
)
)
if self.log_dir or self.version:
logging.error(
(
"nemo logger received explicit_log_dir: {} and at least one of dir: {}"
"or version: {}. Please note that dir, name, and version will be ignored."
).format(
self.explicit_log_dir,
self.log_dir,
self.version,
)
)
if is_global_rank_zero() and Path(self.explicit_log_dir).exists():
logging.warning("NeMoLogger is logging to {}, but it already exists.".format(self.explicit_log_dir))
log_dir, _dir, self.name, version = Path(self.explicit_log_dir), str(self.explicit_log_dir), "", ""
else:
# Default dir to ./nemo_experiments if None was passed
_dir = self.log_dir
if self.log_dir is None:
_dir = str(Path.cwd() / "nemo_experiments")
if not self.name:
self.name = "default"
version = self.version or os.environ.get(NEMO_ENV_VARNAME_VERSION, None)
if not version:
if resume_if_exists:
logging.warning(
"No version folders would be created under the log folder as " "'resume_if_exists' is enabled."
)
version = None
elif is_global_rank_zero():
if self.use_datetime_version:
version = time.strftime("%Y-%m-%d_%H-%M-%S")
if version:
if is_global_rank_zero():
os.environ[NEMO_ENV_VARNAME_VERSION] = version
log_dir = Path(_dir) / Path(str(self.name)) / Path("" if version is None else str(version))
# update app_state with log_dir, exp_dir, etc
app_state = AppState()
app_state.log_dir = log_dir
app_state.exp_dir = _dir
app_state.name = self.name
app_state.version = version
app_state.cmd_args = sys.argv
# Cannot limit creation to global zero as all ranks write to own log file
os.makedirs(log_dir, exist_ok=True)
logging.info("Experiments will be logged at {}".format(log_dir))
if task_config and is_global_rank_zero():
self._handle_task_config(task_config, log_dir)
if isinstance(trainer, pl.Trainer):
self._setup_trainer_loggers(trainer, _dir, version)
self._setup_trainer_model_checkpoint(trainer, log_dir=log_dir, ckpt=self.ckpt)
self._setup_files_to_move(log_dir, app_state)
self._setup_file_logging(log_dir)
return app_state
def _setup_trainer_loggers(self, trainer, dir, version):
loggers = [self.tensorboard, self.wandb, *self.extra_loggers]
loggers = [logger for logger in loggers if logger is not None]
if loggers:
if trainer.logger is not None and not self.tensorboard:
loggers = [trainer.logger] + loggers
trainer._logger_connector.configure_logger(loggers)
if self.update_logger_directory:
for logger in trainer.loggers:
if isinstance(logger, TensorBoardLogger):
logger._version = version or ""
logger._root_dir = Path(dir) / os.path.relpath(logger.save_dir)
logging.warning(
'"update_logger_directory" is True. Overwriting tensorboard'
' logger "save_dir" to {}'.format(logger._root_dir)
)
elif isinstance(logger, WandbLogger):
logger._id = version or ""
logger._save_dir = Path(dir) / logger.save_dir
logger._wandb_init["dir"] = Path(dir) / logger.save_dir
logging.warning(
'"update_logger_directory" is True. Overwriting wandb logger "save_dir" to {}'.format(
logger._save_dir,
)
)
def _setup_trainer_model_checkpoint(self, trainer, log_dir, ckpt=None):
if ckpt:
_overwrite_i = None
for i, callback in enumerate(trainer.callbacks):
if isinstance(callback, PTLModelCheckpoint) and not isinstance(callback, lcp.LocalCheckpointCallback):
logging.warning(
"The Trainer already contains a ModelCheckpoint callback. " "This will be overwritten."
)
_overwrite_i = i
break
if _overwrite_i is not None:
trainer.callbacks[_overwrite_i] = ckpt
else:
trainer.callbacks.append(ckpt)
if ckpt.monitor and "val" in ckpt.monitor:
if (
trainer.max_epochs is not None
and trainer.max_epochs != -1
and trainer.max_epochs < trainer.check_val_every_n_epoch
):
logging.error(
(
"The checkpoint callback was told to monitor a validation value but "
"trainer.max_epochs({}) was less than trainer.check_val_every_n_epoch({})."
"It is very likely this run will fail with ModelCheckpoint(monitor='{}') "
"not found in the returned metrics. Please ensure that validation is "
"run within trainer.max_epochs."
).format(
trainer.max_epochs,
trainer.check_val_every_n_epoch,
ckpt.monitor,
)
)
elif trainer.max_steps is not None and trainer.max_steps != -1:
logging.warning(
(
"The checkpoint callback was told to monitor a validation value and "
"trainer's max_steps was set to {}. Please ensure that max_steps will run "
"for at least {} epochs to ensure that checkpointing will not error out."
).format(
trainer.max_steps,
trainer.check_val_every_n_epoch,
)
)
from nemo.lightning import MegatronStrategy
for callback in trainer.callbacks:
if isinstance(callback, PTLModelCheckpoint) and not isinstance(callback, lcp.LocalCheckpointCallback):
if callback.dirpath is None:
callback.dirpath = Path(log_dir / "checkpoints")
if callback.filename is None:
if isinstance(trainer.strategy, MegatronStrategy):
callback.filename = f"{self.name}--{{{callback.monitor}:.4f}}-{{epoch}}-{{consumed_samples}}"
else:
# For automodel we log global_step
callback.filename = f"{self.name}--{{{callback.monitor}:.4f}}-{{epoch}}-{{step}}"
ModelCheckpoint.CHECKPOINT_NAME_LAST = callback.filename + "-last"
def _handle_task_config(self, task_config, log_dir):
try:
from fiddle._src.experimental import serialization
task_config.save_config_img(log_dir / "task.png")
task_json = serialization.dump_json(task_config)
with open(log_dir / "task.json", "w") as f:
f.write(task_json)
except Exception as e:
logging.warning("Saving task config failed: {}. Skipping saving".format(e))
def _setup_file_logging(self, log_dir):
"""Set up file logging based on rank settings."""
from nemo.constants import NEMO_ENV_VARNAME_TESTING
from nemo.utils.env_var_parsing import get_envbool
from nemo.utils.mcore_logger import add_handlers_to_mcore_logger
# This is set if the env var NEMO_TESTING is set to True.
nemo_testing = get_envbool(NEMO_ENV_VARNAME_TESTING, False)
log_file = log_dir / f"nemo_log_globalrank-{self.global_rank}_localrank-{self.local_rank}.txt"
if self.log_local_rank_0_only and not nemo_testing and self.local_rank == 0:
logging.add_file_handler(log_file)
elif self.log_global_rank_0_only and not nemo_testing and self.global_rank == 0:
logging.add_file_handler(log_file)
elif not (self.log_local_rank_0_only or self.log_global_rank_0_only):
logging.add_file_handler(log_file)
add_handlers_to_mcore_logger()
def _setup_files_to_move(self, log_dir, app_state):
files_to_move = []
if Path(log_dir).exists():
for child in Path(log_dir).iterdir():
if child.is_file():
files_to_move.append(child)
app_state.files_to_move = files_to_move
app_state.files_to_copy = self.files_to_copy
|