File size: 4,827 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import os
import tempfile

import torch
import torch.distributed as dist

from nemo.utils import logging
from nemo.utils.get_rank import is_global_rank_zero

try:
    from megatron.core import parallel_state

    HAVE_MEGATRON_CORE = True
except (ImportError, ModuleNotFoundError):
    HAVE_MEGATRON_CORE = False


def initialize_distributed(args, backend='nccl'):
    """Initialize torch.distributed."""
    # Get local rank in case it is provided.
    local_rank = args.local_rank

    # Get rank and world size.
    rank = int(os.getenv('RANK', '0'))
    world_size = int(os.getenv("WORLD_SIZE", '1'))

    logging.info(
        f'Initializing torch.distributed with local_rank: {local_rank}, rank: {rank}, world_size: {world_size}'
    )

    # Set the device id.
    device = rank % torch.cuda.device_count()
    if local_rank is not None:
        device = local_rank
    torch.cuda.set_device(device)

    # Call the init process.
    init_method = 'tcp://'
    master_ip = os.getenv('MASTER_ADDR', 'localhost')
    master_port = os.getenv('MASTER_PORT', '6000')
    init_method += master_ip + ':' + master_port
    torch.distributed.init_process_group(backend=backend, world_size=world_size, rank=rank, init_method=init_method)
    return local_rank, rank, world_size


def gather_objects(partial_results_list, main_rank=None):
    """
    Collect objects (e.g., results) from all GPUs.
    Useful for inference over multiple GPUs with DDP.

    Use main_rank to specify which rank will be used to gather results.
    This allows to continue execution on the main_rank only after the gather.

    Args:
        partial_results_list: list of partial results from each GPU
        main_rank: rank of the main process to collect results from all GPUs (useful for collecting results in a target rank)


    Example:
        predictions = gather_objects(predictions,main_rank=0)
        # all but rank 0 will return None
        if predictions is None:
            return

        # from here only rank 0 should contiue
        pickle.dump(predictions, open(output_fname, "wb"))
    """
    # do not fail when DDP is not initialized
    if not parallel_state.is_initialized():
        return partial_results_list

    rank = parallel_state.get_data_parallel_rank()
    world_size = parallel_state.get_data_parallel_world_size()
    # return input when no DDP is used
    if world_size == 1:
        return partial_results_list

    gathered_results = [None for _ in range(world_size)]
    torch.distributed.all_gather_object(gathered_results, partial_results_list)

    # return None to non-main ranks
    if main_rank is not None:
        if rank != main_rank:
            return None

    # return collected results
    results_list = []
    for r in gathered_results:
        results_list.extend(r)

    return results_list


@contextlib.contextmanager
def temporary_directory():
    """Create a shared temporary directory across ranks in distributed setup.

    This function assumes that the distributed setup has been already
    correctly initialized. It is intended to be used only in single-node
    setup so that all ranks can access the directory created."""

    if is_global_rank_zero():
        tmp_dir = [tempfile.TemporaryDirectory()]
    else:
        tmp_dir = [None]
    dist.broadcast_object_list(tmp_dir)
    yield tmp_dir[0].name
    # We use barrier below to make sure that rank zero won't exit
    # and delete tmp_dir while other ranks may still use it
    dist.barrier()
    if is_global_rank_zero():
        tmp_dir[0].cleanup()


def webdataset_split_by_workers(src):
    """
    This is for latest webdataset>=0.2.6
    This function will make sure that each worker gets a different subset of the dataset.
    """
    # group = torch.distributed.group.WORLD
    # rank = torch.distributed.get_rank(group=group)
    # world_size = torch.distributed.get_world_size(group=group)
    worker_info = torch.utils.data.get_worker_info()
    num_workers = 1
    if worker_info is not None:
        worker = worker_info.id
        num_workers = worker_info.num_workers

    if num_workers > 1:
        yield from list(src)[worker::num_workers]
    else:
        yield from src