Spaces:
Runtime error
Runtime error
File size: 4,827 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import os
import tempfile
import torch
import torch.distributed as dist
from nemo.utils import logging
from nemo.utils.get_rank import is_global_rank_zero
try:
from megatron.core import parallel_state
HAVE_MEGATRON_CORE = True
except (ImportError, ModuleNotFoundError):
HAVE_MEGATRON_CORE = False
def initialize_distributed(args, backend='nccl'):
"""Initialize torch.distributed."""
# Get local rank in case it is provided.
local_rank = args.local_rank
# Get rank and world size.
rank = int(os.getenv('RANK', '0'))
world_size = int(os.getenv("WORLD_SIZE", '1'))
logging.info(
f'Initializing torch.distributed with local_rank: {local_rank}, rank: {rank}, world_size: {world_size}'
)
# Set the device id.
device = rank % torch.cuda.device_count()
if local_rank is not None:
device = local_rank
torch.cuda.set_device(device)
# Call the init process.
init_method = 'tcp://'
master_ip = os.getenv('MASTER_ADDR', 'localhost')
master_port = os.getenv('MASTER_PORT', '6000')
init_method += master_ip + ':' + master_port
torch.distributed.init_process_group(backend=backend, world_size=world_size, rank=rank, init_method=init_method)
return local_rank, rank, world_size
def gather_objects(partial_results_list, main_rank=None):
"""
Collect objects (e.g., results) from all GPUs.
Useful for inference over multiple GPUs with DDP.
Use main_rank to specify which rank will be used to gather results.
This allows to continue execution on the main_rank only after the gather.
Args:
partial_results_list: list of partial results from each GPU
main_rank: rank of the main process to collect results from all GPUs (useful for collecting results in a target rank)
Example:
predictions = gather_objects(predictions,main_rank=0)
# all but rank 0 will return None
if predictions is None:
return
# from here only rank 0 should contiue
pickle.dump(predictions, open(output_fname, "wb"))
"""
# do not fail when DDP is not initialized
if not parallel_state.is_initialized():
return partial_results_list
rank = parallel_state.get_data_parallel_rank()
world_size = parallel_state.get_data_parallel_world_size()
# return input when no DDP is used
if world_size == 1:
return partial_results_list
gathered_results = [None for _ in range(world_size)]
torch.distributed.all_gather_object(gathered_results, partial_results_list)
# return None to non-main ranks
if main_rank is not None:
if rank != main_rank:
return None
# return collected results
results_list = []
for r in gathered_results:
results_list.extend(r)
return results_list
@contextlib.contextmanager
def temporary_directory():
"""Create a shared temporary directory across ranks in distributed setup.
This function assumes that the distributed setup has been already
correctly initialized. It is intended to be used only in single-node
setup so that all ranks can access the directory created."""
if is_global_rank_zero():
tmp_dir = [tempfile.TemporaryDirectory()]
else:
tmp_dir = [None]
dist.broadcast_object_list(tmp_dir)
yield tmp_dir[0].name
# We use barrier below to make sure that rank zero won't exit
# and delete tmp_dir while other ranks may still use it
dist.barrier()
if is_global_rank_zero():
tmp_dir[0].cleanup()
def webdataset_split_by_workers(src):
"""
This is for latest webdataset>=0.2.6
This function will make sure that each worker gets a different subset of the dataset.
"""
# group = torch.distributed.group.WORLD
# rank = torch.distributed.get_rank(group=group)
# world_size = torch.distributed.get_world_size(group=group)
worker_info = torch.utils.data.get_worker_info()
num_workers = 1
if worker_info is not None:
worker = worker_info.id
num_workers = worker_info.num_workers
if num_workers > 1:
yield from list(src)[worker::num_workers]
else:
yield from src
|