File size: 7,701 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright (c) 2025, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os

from nemo.collections import llm
from nemo.collections.llm.modelopt import ExportConfig, QuantizationConfig
from nemo.collections.llm.modelopt.quantization.quant_cfg_choices import get_quant_cfg_choices
from nemo.collections.llm.modelopt.quantization.quantizer import KV_QUANT_CFG_CHOICES
from nemo.utils import logging


def get_args():
    """Parses PTQ arguments."""
    QUANT_CFG_CHOICES_LIST = ["no_quant", *get_quant_cfg_choices()]
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="NeMo PTQ argument parser"
    )
    parser.add_argument("-nc", "--nemo_checkpoint", type=str, help="Source NeMo 2.0 checkpoint")
    parser.add_argument(
        "--tokenizer", type=str, help="Tokenizer to use. If not provided, model tokenizer will be used"
    )
    parser.add_argument("--decoder_type", type=str, help="Decoder type for TensorRT-Model-Optimizer")
    parser.add_argument("-ctp", "--calibration_tp", "--calib_tp", type=int, default=1)
    parser.add_argument("-cep", "--calibration_ep", "--calib_ep", type=int, default=1)
    parser.add_argument("-cpp", "--calibration_pp", "--calib_pp", type=int, default=1)
    parser.add_argument(
        "--num_layers_in_first_pipeline_stage",
        type=int,
        default=None,
        help="Number of layers in the first pipeline stage. If None, pipeline parallelism will default to evenly split layers.",
    )
    parser.add_argument(
        "--num_layers_in_last_pipeline_stage",
        type=int,
        default=None,
        help="Number of layers in the last pipeline stage. If None, pipeline parallelism will default to evenly split layers.",
    )
    parser.add_argument(
        "-itp",
        "--inference_tp",
        "--tensor_parallelism_size",
        type=int,
        default=1,
        help="TRT-LLM engine TP size. (Only used when `--export_format` is 'trtllm')",
    )
    parser.add_argument(
        "-ipp",
        "--inference_pp",
        "--pipeline_parallelism_size",
        type=int,
        default=1,
        help="TRT-LLM engine PP size. (Only used when `--export_format` is 'trtllm')",
    )
    parser.add_argument("--devices", type=int, help="Number of GPUs to use per node")
    parser.add_argument("-nodes", "--num_nodes", type=int, help="Number of nodes used")
    parser.add_argument("-out", "--export_path", "--output_path", type=str, help="Path for the exported engine")
    parser.add_argument(
        "--export_format", default="trtllm", choices=["trtllm", "nemo", "hf"], help="Model format to export as"
    )
    parser.add_argument(
        "-algo",
        "--algorithm",
        type=str,
        default="fp8",
        help="TensorRT-Model-Optimizer quantization algorithm",
    )
    parser.add_argument(
        "-awq_bs", "--awq_block_size", type=int, default=128, help="Block size for AWQ quantization algorithms"
    )
    parser.add_argument("--sq_alpha", type=float, default=0.5, help="Smooth-Quant alpha parameter")
    parser.add_argument("--enable_kv_cache", help="Enables KV-cache quantization", action="store_true")
    parser.add_argument("--disable_kv_cache", dest="enable_kv_cache", action="store_false")
    parser.set_defaults(enable_kv_cache=None)
    parser.add_argument(
        "--kv_cache_qformat",
        type=str,
        default="fp8",
        choices=KV_QUANT_CFG_CHOICES,
        help="KV-cache quantization format",
    )
    parser.add_argument(
        "-dt", "--dtype", default="bf16", choices=["16", "bf16"], help="Default precision for non-quantized layers"
    )
    parser.add_argument("-bs", "--batch_size", default=64, type=int, help="Calibration batch size")
    parser.add_argument("-sl", "--seq_len", default=128, type=int, help="Length of the tokenized text")
    parser.add_argument(
        "-calib_size", "--calibration_dataset_size", default=512, type=int, help="Size of calibration dataset"
    )
    parser.add_argument(
        "-calib_ds",
        "--calibration_dataset",
        default="cnn_dailymail",
        type=str,
        help='Calibration dataset to be used. Should be "wikitext", "cnn_dailymail" or path to a local .json file',
    )
    parser.add_argument(
        "--generate_sample", help="Generate sample model output after performing PTQ", action="store_true"
    )
    parser.add_argument(
        "--trust_remote_code", help="Trust remote code when loading HuggingFace models", action="store_true"
    )
    parser.add_argument("--legacy_ckpt", help="Load ckpt saved with TE < 1.14", action="store_true")
    args = parser.parse_args()

    if args.algorithm not in QUANT_CFG_CHOICES_LIST and not os.path.isfile(args.algorithm):
        raise ValueError(
            f"Quantization algorithm {args.algorithm} is not supported: choose one of {QUANT_CFG_CHOICES_LIST} "
            "or provide a path to a JSON file with a quantization configuration."
        )

    if args.export_path is None:
        if args.export_format == "trtllm":
            args.export_path = f"./qnemo_{args.algorithm}_tp{args.inference_tp}_pp{args.inference_pp}"
        else:
            args.export_path = f"./{args.export_format}_{args.algorithm}"

    if args.devices is None:
        args.devices = args.calibration_tp
    if args.num_nodes is None:
        args.num_nodes = args.calibration_pp

    return args


def main():
    """Example NeMo 2.0 Post Training Quantization workflow"""
    args = get_args()
    if os.path.exists(args.export_path):
        logging.info(f"Export path: {args.export_path} already exists. Will skip PTQ")
        return

    quantization_config = QuantizationConfig(
        algorithm=None if args.algorithm == "no_quant" else args.algorithm,
        awq_block_size=args.awq_block_size,
        sq_alpha=args.sq_alpha,
        enable_kv_cache=args.enable_kv_cache,
        kv_cache_qformat=args.kv_cache_qformat,
        calibration_dataset=args.calibration_dataset,
        calibration_dataset_size=args.calibration_dataset_size,
        calibration_batch_size=args.batch_size,
        calibration_seq_len=args.seq_len,
    )
    export_config = ExportConfig(
        export_format=args.export_format,
        path=args.export_path,
        decoder_type=args.decoder_type,
        inference_tp=args.inference_tp,
        inference_pp=args.inference_pp,
        dtype=args.dtype,
        generate_sample=args.generate_sample,
    )

    llm.ptq(
        model_path=args.nemo_checkpoint,
        export_config=export_config,
        calibration_tp=args.calibration_tp,
        calibration_pp=args.calibration_pp,
        calibration_ep=args.calibration_ep,
        num_layers_in_first_pipeline_stage=args.num_layers_in_first_pipeline_stage,
        num_layers_in_last_pipeline_stage=args.num_layers_in_last_pipeline_stage,
        devices=args.devices,
        num_nodes=args.num_nodes,
        quantization_config=quantization_config,
        tokenizer_path=args.tokenizer,
        legacy_ckpt=args.legacy_ckpt,
        trust_remote_code=args.trust_remote_code,
    )


if __name__ == "__main__":
    main()