File size: 25,680 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
# Copyright (c) 2025, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from pathlib import Path
from typing import List, Optional

import nemo_run as run
import pandas as pd
from numpy import nan

from nemo.collections.llm.gpt.data.mock import MockDataModule
from nemo.collections.llm.recipes.precision.mixed_precision import (
    bf16_with_fp8_current_scaling_mixed,
    bf16_with_fp8_mixed,
    bf16_with_fp8_subchannel_scaling_mixed,
    bf16_with_mxfp8_mixed,
)
from nemo.lightning.pytorch.callbacks.flops_callback import FLOPsMeasurementCallback
from nemo.lightning.pytorch.callbacks.model_checkpoint import ModelCheckpoint
from nemo.utils import logging

from .utils import get_comm_overlap_callback_idx


def get_csv_configs(gpu: str, task: str, model_name: str, model_size: str, args) -> pd.DataFrame:
    """
    Get recommended configs tuned for performance from a csv file.
    User (command line) provided args override the recommended configs.
    """
    script_dir = str(Path(__file__).parent.absolute())
    recommended_configs_csv = os.path.join(script_dir, "recommended_model_configs", f"model_configs_{gpu}.csv")
    logging.info(f"Using {recommended_configs_csv} for loading default recommended model configs")

    config_df = pd.DataFrame()
    if os.path.isfile(recommended_configs_csv):
        df = pd.read_csv(recommended_configs_csv)
        config_df = df[
            (df["task"] == task)
            & (df["model"] == model_name)
            & (df["size"] == model_size)
            & (df["dtype"] == args.compute_dtype)
            & (args.num_gpus is None or df['num_gpus'] == args.num_gpus)
        ]
        config_df = config_df.replace({nan: None})
        if len(config_df) == 0:
            logging.warning(f"Missing performance configs for {task}-{model_name}-{model_size}-{args.compute_dtype}")
            logging.warning("Make sure you provide all necessary arguments in the command line")

    config = config_df.to_dict(orient='records')[0] if len(config_df) > 0 else {}

    return config


def get_user_configs(gpu: str, task: str, model_name: str, model_size: str, args) -> List[int]:
    """
    Choose recommended configs tuned for performance from a csv file if available.
    User (command line) provided args override the recommended configs.

    NOTE: pre-train and PEFT recommended configs available for H100 and B200.

    Args:
        gpu (str): target GPU machine for experiment. Options- ['h100', 'b200']
        task (str): experiment task. Options- ['pre_train', 'sft', 'lora']
        model_name (str): target model for experiment. E.g.: 'llama3', 'mixtral'
        model_size (str): size of target model. E.g.: '8b' (for llama3)
    """
    config = get_csv_configs(gpu.lower(), task, model_name, model_size, args)

    if gpu.lower() == "gb200" and args.gpus_per_node > 4:
        args.gpus_per_node = 4
        logging.warning("GB200 has 4 GPUs per node. Setting gpus_per_node to 4.")
    num_gpus = config.get("num_gpus") if args.num_gpus is None else args.num_gpus
    num_nodes = -(num_gpus // -args.gpus_per_node)  # ceil division
    mbs = config.get("mbs") if args.micro_batch_size is None else args.micro_batch_size
    gbs = config.get("gbs") if args.global_batch_size is None else args.global_batch_size
    tp_size = config.get("tp_size") if args.tensor_parallel_size is None else args.tensor_parallel_size
    pp_size = config.get("pp_size") if args.pipeline_parallel_size is None else args.pipeline_parallel_size
    cp_size = config.get("cp_size") if args.context_parallel_size is None else args.context_parallel_size
    ep_size = config.get("ep_size") if args.expert_parallel_size is None else args.expert_parallel_size
    vp_size = args.virtual_pipeline_parallel_size
    vp_size = config.get("vp_size") if vp_size is None else vp_size
    etp_size = args.expert_tensor_parallel_size
    etp_size = config.get("etp_size") if etp_size is None else etp_size

    enable_cuda_graphs = config.get("cuda_graphs") if args.cuda_graphs is None else args.cuda_graphs
    enable_cuda_graphs = False if enable_cuda_graphs is None else bool(int(enable_cuda_graphs))

    use_mcore_fsdp = config.get("use_mcore_fsdp") if args.use_mcore_fsdp is None else args.use_mcore_fsdp
    use_mcore_fsdp = False if use_mcore_fsdp is None else bool(int(use_mcore_fsdp))

    recompute_layers = config.get("recompute_layers") if args.recompute_layers is None else args.recompute_layers
    recompute_layers = 0 if recompute_layers is None else int(recompute_layers)
    activation_offload_layers = (
        config.get("activation_offload_layers")
        if args.activation_offload_layers is None
        else args.activation_offload_layers
    )
    activation_offload_layers = 0 if activation_offload_layers is None else int(activation_offload_layers)

    if args.recompute_modules is not None:
        recompute_modules = args.recompute_modules
        assert isinstance(recompute_modules, list), "recompute_modules must be a list"
    elif config.get("recompute_modules") is not None:
        recompute_modules = config.get("recompute_modules").split('/')
    else:
        recompute_modules = None

    keep_fsdp_fp8_transpose_cache = (
        config.get("keep_fsdp_fp8_transpose_cache")
        if args.keep_fsdp_fp8_transpose_cache is None
        else args.keep_fsdp_fp8_transpose_cache
    )
    keep_fsdp_fp8_transpose_cache = (
        False if keep_fsdp_fp8_transpose_cache is None else bool(int(keep_fsdp_fp8_transpose_cache))
    )

    use_user_buffer_registration = (
        config.get("use_user_buffer_registration")
        if args.use_user_buffer_registration is None
        else args.use_user_buffer_registration
    )
    use_user_buffer_registration = (
        False if use_user_buffer_registration is None else bool(int(use_user_buffer_registration))
    )

    use_sharp = config.get("use_sharp") if args.use_sharp is None else args.use_sharp
    use_sharp = False if use_sharp is None else bool(int(use_sharp))

    kwargs = num_nodes, mbs, gbs, tp_size, pp_size, cp_size, vp_size, ep_size, etp_size
    kwargs = [int(arg) if arg is not None else arg for arg in kwargs]
    kwargs += [
        enable_cuda_graphs,
        use_mcore_fsdp,
        recompute_layers,
        activation_offload_layers,
        recompute_modules,
        keep_fsdp_fp8_transpose_cache,
        use_user_buffer_registration,
        use_sharp,
    ]

    # print the received arguments for users to debug
    logging.info("Received model parallel configs: ")
    logging.info(f"{num_nodes=}")
    logging.info(f"num_gpus_per_node={args.gpus_per_node}")
    logging.info(f"{mbs=}")
    logging.info(f"{gbs=}")
    logging.info(f"{tp_size=}")
    logging.info(f"{pp_size=}")
    logging.info(f"{cp_size=}")
    logging.info(f"{vp_size=}")
    logging.info(f"{ep_size=}")
    logging.info(f"{etp_size=}")
    logging.info(f"{enable_cuda_graphs=}")
    logging.info(f"{use_mcore_fsdp=}")
    logging.info(f"{recompute_layers=}")
    logging.info(f"{activation_offload_layers=}")
    logging.info(f"{recompute_modules=}")
    logging.info(f"{keep_fsdp_fp8_transpose_cache=}")
    logging.info(f"{use_user_buffer_registration=}")
    logging.info(f"{use_sharp=}")

    return kwargs


def set_mcore_fsdp_configs(recipe, comm_overlap_callback_idx: int | None, tp_size: int | None):
    """
    Set Mcore FSDP related configs.
    """
    recipe.model.config.init_model_with_meta_device = True
    recipe.trainer.strategy.fsdp = "megatron"
    recipe.trainer.strategy.ddp.data_parallel_sharding_strategy = "optim_grads_params"
    # At fp32 gradient, `recipe.trainer.strategy.ddp.gradient_reduce_div_fusion` is used for fusion
    if recipe.trainer.plugins.grad_reduce_in_fp32:
        recipe.trainer.strategy.ddp.average_in_collective = False
    recipe.trainer.strategy.ddp.keep_fp8_transpose_cache = False

    try:
        recipe.trainer.strategy.ddp.keep_fp8_transpose_cache = False
    except AttributeError:
        recipe.trainer.strategy.ddp.keep_fp8_transpose_cache_when_using_custom_fsdp = False
        logging.warning(
            "Deprecation Notice: `keep_fp8_transpose_cache_when_using_custom_fsdp` "
            "will be deprecated in M-Core 0.14. "
            "Please use `keep_fsdp_fp8_transpose_cache` instead."
        )
    recipe.model.config.gradient_accumulation_fusion = False
    if (
        comm_overlap_callback_idx is not None
        and recipe.trainer.callbacks[comm_overlap_callback_idx].defer_embedding_wgrad_compute
    ):
        logging.warning("Disabling deferring embedding wgrad compute because it cannot work with FSDP together.")
        recipe.trainer.callbacks[comm_overlap_callback_idx].defer_embedding_wgrad_compute = False

    return recipe


def set_precision_configs(recipe, compute_dtype: str, fp8_recipe: str | None = None):
    """
    Set precision related configs.
    """
    if compute_dtype is None:
        return recipe

    if compute_dtype.lower() == "bf16":
        recipe.optim.config.use_precision_aware_optimizer = True

    if compute_dtype is not None and compute_dtype.lower() == "fp8":
        if fp8_recipe is None:
            fp8_recipe = "ds"
        if fp8_recipe.lower() == "ds":
            recipe.trainer.plugins = bf16_with_fp8_mixed()
        elif fp8_recipe.lower() == "cs":
            recipe.trainer.plugins = bf16_with_fp8_current_scaling_mixed()
            # disable first/last layer bf16 for benchmarking
            recipe.trainer.plugins.first_last_layers_bf16 = False
        elif fp8_recipe.lower() == "mxfp8":
            recipe.trainer.plugins = bf16_with_mxfp8_mixed()
        elif fp8_recipe.lower() == "ss":
            recipe.trainer.plugins = bf16_with_fp8_subchannel_scaling_mixed()

    recipe.trainer.plugins.grad_reduce_in_fp32 = False

    # Enable reuse_grad_buf_for_mxfp8_param_ag for MXFP8 and disable AG overlap
    # because it is not supported with reuse_grad_buf_for_mxfp8_param_ag
    if compute_dtype.lower() == "fp8" and fp8_recipe.lower() == "mxfp8":
        comm_overlap_callback_idx = get_comm_overlap_callback_idx(recipe.trainer.callbacks)
        if comm_overlap_callback_idx is not None:
            recipe.trainer.callbacks[comm_overlap_callback_idx].overlap_param_gather = False
        logging.warning(
            "When using MXFP8, to reduce memory usage, we use reuse_grad_buf_for_mxfp8_param_ag. "
            "Disabling AG overlap because it is not supported with reuse_grad_buf_for_mxfp8_param_ag."
        )

    return recipe


def set_recompute_configs(
    recipe,
    recompute_layers: int,
    activation_offload_layers: int,
    recompute_modules: Optional[List[str]],
):
    """
    Set activation recomputing and offloading related configs.
    """
    if recompute_layers > 0:
        recipe.model.config.recompute_granularity = "full"
        recipe.model.config.recompute_method = "block"
        recipe.model.config.recompute_num_layers = recompute_layers

    # Activation cpu offloading
    if activation_offload_layers > 0:
        recipe.model.config.cpu_offloading = True
        recipe.model.config.cpu_offloading_weights = False
        recipe.model.config.cpu_offloading_num_layers = activation_offload_layers

    # Activation recompute configs
    if recompute_modules is not None:
        recipe.model.config.recompute_modules = recompute_modules
        assert (
            recipe.model.config.recompute_granularity == "selective"
        ), "recompute_granularity must be selective when recompute_modules is provided"
        assert (
            recipe.model.config.recompute_num_layers is None
        ), "recompute_num_layers must be None when recompute_modules is provided"

    return recipe


def set_cuda_graph_configs(recipe, enable_cuda_graphs: bool, task: str):
    """
    Set CUDA graph related configs.
    """
    recipe.model.config.enable_cuda_graph = enable_cuda_graphs
    recipe.trainer.strategy.use_te_rng_tracker = enable_cuda_graphs
    if (
        task in ["none", "lora"]
        and hasattr(recipe.data, "packed_sequence_specs")
        and recipe.data.packed_sequence_specs is not None
    ):
        recipe.data.packed_sequence_specs.pad_cu_seqlens = enable_cuda_graphs

    return recipe


def set_full_iteration_cuda_graph_configs(recipe, pp_size: int | None, vp_size: int | None):
    """
    Set optimizations required for full iteration CUDA graphs based on specific conditions.
    """
    if not (
        hasattr(recipe.model, 'config')
        and hasattr(recipe.model.config, 'cuda_graph_scope')
        and recipe.model.config.cuda_graph_scope == 'full_iteration'
    ):
        return recipe

    cuda_graph_configs = []

    if recipe.trainer.strategy.ddp.check_for_nan_in_grad != False:
        recipe.trainer.strategy.ddp.check_for_nan_in_grad = False
        cuda_graph_configs.append("check_for_nan_in_grad=False")
        logging.warning("For full iteration CUDA graphs, we need to disable check_for_nan_in_grad")

    if pp_size and pp_size > 1:
        if recipe.model.config.variable_seq_lengths != False:
            recipe.model.config.variable_seq_lengths = False
            cuda_graph_configs.append("variable_seq_lengths=False")
            logging.warning("For full iteration CUDA graphs, we need to disable variable_seq_lengths")

        if recipe.model.config.batch_p2p_sync != False:
            recipe.model.config.batch_p2p_sync = False
            cuda_graph_configs.append("batch_p2p_sync=False")
            logging.warning("For full iteration CUDA graphs, we need to disable batch_p2p_sync")

    comm_overlap_callback_idx = get_comm_overlap_callback_idx(recipe.trainer.callbacks)
    if comm_overlap_callback_idx is not None:
        callback = recipe.trainer.callbacks[comm_overlap_callback_idx]

        if pp_size and pp_size > 1:
            if callback.batch_p2p_comm != False:
                callback.batch_p2p_comm = False
                cuda_graph_configs.append("batch_p2p_comm=False")
                logging.warning("For full iteration CUDA graphs, disabling batch_p2p_comm would improve memory usage")

        if vp_size and vp_size > 1:
            if callback.overlap_param_gather_with_optimizer_step != False:
                callback.overlap_param_gather_with_optimizer_step = False
                cuda_graph_configs.append("overlap_param_gather_with_optimizer_step=False")
                logging.warning(
                    "For full iteration CUDA graphs, we need to disable overlap_param_gather_with_optimizer_step"
                )
    else:
        logging.warning("MegatronCommOverlapCallback not found in recipe.trainer.callbacks")

    # Log all applied configurations
    if cuda_graph_configs:
        logging.info(f"Applied full iteration CUDA graph optimizations: {', '.join(cuda_graph_configs)}")

    return recipe


def set_perf_optimization_configs(
    recipe,
    use_mcore_fsdp: bool,
    enable_cuda_graphs: bool,
    task: str,
    tp_size: int | None,
    pp_size: int | None,
    vp_size: int | None,
    compute_dtype: str,
    fp8_recipe: str | None,
    recompute_layers: int,
    activation_offload_layers: int,
    recompute_modules: Optional[List[str]],
    use_fsdp_double_buffer: Optional[bool] = None,
    use_user_buffer_registration: Optional[bool] = None,
    use_sharp: Optional[bool] = None,
    keep_fsdp_fp8_transpose_cache: Optional[bool] = None,
):
    """
    Set performance optimization related configs.
    """
    # enable cross entropy fusion with TE kernel
    recipe.model.config.cross_entropy_fusion_impl = "te"

    if use_fsdp_double_buffer:
        assert use_mcore_fsdp == True, "use_fsdp_double_buffer requires use_mcore_fsdp to be True"

    if use_mcore_fsdp and enable_cuda_graphs:
        logging.warning("Currently, cuda graphs are not supported with FSDP. Disabling cuda graphs.")
        enable_cuda_graphs = False
    recipe = set_cuda_graph_configs(recipe, enable_cuda_graphs, task)

    if enable_cuda_graphs:
        recipe = set_full_iteration_cuda_graph_configs(recipe, pp_size, vp_size)

    if use_mcore_fsdp:
        comm_overlap_callback_idx = get_comm_overlap_callback_idx(recipe.trainer.callbacks)
        recipe = set_mcore_fsdp_configs(recipe, comm_overlap_callback_idx, tp_size)

    recipe = set_precision_configs(recipe, compute_dtype, fp8_recipe)

    recipe = set_recompute_configs(recipe, recompute_layers, activation_offload_layers, recompute_modules)

    recipe.trainer.strategy.use_sharp = bool(use_sharp)

    is_ddp_obj = hasattr(recipe.trainer.strategy, "ddp") and not isinstance(recipe.trainer.strategy.ddp, str)
    if use_user_buffer_registration and not is_ddp_obj:
        logging.warning("DDP is not configured. Cannot use user buffer registration.")
    if is_ddp_obj:
        # Disable local gradient checker at non-debugging mode
        recipe.trainer.strategy.ddp.check_for_nan_in_grad = False
        recipe.trainer.strategy.ddp.check_for_large_grads = False
        recipe.trainer.strategy.ddp.nccl_ub = bool(use_user_buffer_registration)
        recipe.trainer.strategy.ddp.fsdp_double_buffer = bool(use_fsdp_double_buffer)
        try:
            recipe.trainer.strategy.ddp.keep_fp8_transpose_cache = bool(keep_fsdp_fp8_transpose_cache)
        except AttributeError:
            recipe.trainer.strategy.ddp.keep_fp8_transpose_cache_when_using_custom_fsdp = bool(
                keep_fsdp_fp8_transpose_cache
            )
            logging.warning(
                "Deprecation Notice: `keep_fp8_transpose_cache_when_using_custom_fsdp` "
                "will be deprecated in M-Core 0.14. "
                "Please use `keep_fsdp_fp8_transpose_cache` instead."
            )

    return recipe


def set_primary_perf_configs(
    recipe,
    task: str,
    num_nodes: int,
    num_gpus_per_node: int,
    mbs: int,
    gbs: int,
    max_steps: int,
    tp_size: int,
    pp_size: int,
    cp_size: int,
    vp_size: int,
    ep_size: int,
    etp_size: Optional[int] = None,
    enable_cuda_graphs: bool = False,
    use_mcore_fsdp: bool = False,
    use_fsdp_double_buffer: Optional[bool] = None,
    use_user_buffer_registration: Optional[bool] = None,
    use_sharp: Optional[bool] = None,
    recompute_layers: int = 0,
    activation_offload_layers: int = 0,
    compute_dtype: str = None,
    fp8_recipe: str = None,
    recompute_modules: Optional[List[str]] = None,
    nccl_communicator_config_path: str = None,
    keep_fsdp_fp8_transpose_cache: Optional[bool] = None,
    use_te_op_fuser: Optional[bool] = None,
    use_te_act_func: Optional[bool] = None,
    act_func_fp8_input_store: Optional[bool] = None,
):
    """Set experiment configs we usually tune for performance of all models."""
    # nemo.lightning.Trainer configs
    recipe.trainer.num_nodes = num_nodes
    recipe.trainer.devices = num_gpus_per_node
    recipe.trainer.max_steps = max_steps

    recipe.trainer.val_check_interval = max_steps
    recipe.trainer.limit_val_batches = 0

    # lightning.pytorch.LightningDataModule configs
    recipe.data.micro_batch_size = mbs
    recipe.data.global_batch_size = gbs
    if recipe.data.__fn_or_cls__ == MockDataModule:
        recipe.data.num_train_samples = max_steps * gbs  # ensure only 1 epoch for whole run

    # parallelism configs
    recipe.trainer.strategy.tensor_model_parallel_size = tp_size
    recipe.trainer.strategy.pipeline_model_parallel_size = pp_size
    recipe.trainer.strategy.context_parallel_size = cp_size
    recipe.trainer.strategy.virtual_pipeline_model_parallel_size = None if vp_size == 1 else vp_size
    recipe.trainer.strategy.expert_model_parallel_size = ep_size
    recipe.trainer.strategy.expert_tensor_parallel_size = etp_size
    recipe.trainer.strategy.sequence_parallel = bool(tp_size > 1)
    if nccl_communicator_config_path is not None:
        recipe.trainer.strategy.nccl_communicator_config_path = nccl_communicator_config_path

    # callback configs
    comm_overlap_callback_idx = get_comm_overlap_callback_idx(recipe.trainer.callbacks)
    dp_size = (num_nodes * num_gpus_per_node) / (tp_size * pp_size * cp_size)
    if comm_overlap_callback_idx is not None:
        # WARNING: If True, checkpointing (if enabled) might not work
        recipe.trainer.callbacks[comm_overlap_callback_idx].overlap_param_gather_with_optimizer_step = bool(
            dp_size > 1 and pp_size > 1 and vp_size and vp_size > 1
        )

    # te op fuser for MLP part
    if use_te_op_fuser:
        assert recipe.model.config.num_moe_experts is None, "use_te_op_fuser is not supported for MOE models"
        if hasattr(recipe.model.config, "use_transformer_engine_op_fuser"):
            recipe.model.config.use_transformer_engine_op_fuser = True
        else:
            logging.warning("use_transformer_engine_op_fuser is not supported for this version of MCORE.")

    # te activation function for MLP part
    recipe.model.config.use_te_activation_func = use_te_act_func or False
    assert (
        not act_func_fp8_input_store
    ) or use_te_act_func, "act_func_fp8_input_store requires use_te_act_func to be True"
    recipe.model.config.activation_func_fp8_input_store = act_func_fp8_input_store or False

    recipe = set_perf_optimization_configs(
        recipe=recipe,
        use_mcore_fsdp=use_mcore_fsdp,
        enable_cuda_graphs=enable_cuda_graphs,
        task=task,
        tp_size=tp_size,
        pp_size=pp_size,
        vp_size=vp_size,
        compute_dtype=compute_dtype,
        fp8_recipe=fp8_recipe,
        recompute_layers=recompute_layers,
        activation_offload_layers=activation_offload_layers,
        recompute_modules=recompute_modules,
        use_fsdp_double_buffer=use_fsdp_double_buffer,
        use_user_buffer_registration=use_user_buffer_registration,
        use_sharp=use_sharp,
        keep_fsdp_fp8_transpose_cache=keep_fsdp_fp8_transpose_cache,
    )

    return recipe


def set_exp_logging_configs(
    recipe,
    task: str,
    domain: str,
    model_name: str,
    enable_tb: bool,
    enable_wd: bool,
    wandb_prj_name: str,
    wandb_job_name: str,
):
    """Set experiment logging configs."""
    if task == "pre_train" and domain == "llm":
        recipe.trainer.callbacks.append(
            run.Config(
                FLOPsMeasurementCallback,
                model_config=recipe.model.config,
                data_config=recipe.data,
                model_name=model_name,
            )
        )

    if not enable_tb:  # tensorboard adds performance overhead.
        recipe.log.tensorboard = None
        recipe.trainer.logger = False
    else:
        # default path is NOT intuitive- `<log_dir>/code/nemo_experiments/tb_logs/default/<tfevents_file>`
        recipe.log.log_dir = "/nemo_run/lightning_logs"  # saves file at- `<log_dir>/lightning_logs/tb_logs
    if enable_wd:
        from nemo.collections.llm.recipes.log.default import wandb_logger

        recipe.log.wandb = wandb_logger(project=wandb_prj_name, name=wandb_job_name)

    # Misc. for overall faster experiment runtime
    recipe.log.ckpt = None

    # disable checkpointing if no ModelCheckpoint callback is found
    callbacks = recipe.trainer.callbacks
    checkpoint_callback_idx = None
    if callbacks:  # default is None in lightning
        for idx, callback in enumerate(callbacks):
            if callback.__fn_or_cls__ == ModelCheckpoint:
                checkpoint_callback_idx = idx
                break
    recipe.trainer.enable_checkpointing = checkpoint_callback_idx is not None
    recipe.trainer.log_every_n_steps = 1

    return recipe


def args_sanity_check(args: dict) -> None:
    """
    Check the sanity of argument settings
    """
    if args.wandb:
        assert args.wandb_key is not None, "wandb logger needs \"wandb_key\""
        assert args.wandb_prj_name is not None, "wandb logger needs \"wandb_prj_name\""
        assert args.wandb_job_name is not None, "wandb logger needs \"wandb_job_name\""


def build_perf_env_plugin(args, pp_size: int | None = None, user_buffer_registration: Optional[bool] = None):
    """
    Create a PerfEnvPlugin with consistent defaults across scripts.

    - enable_vboost only when gpu is h100
    - set nccl_pp_comm_chunksize when pipeline parallelism is used
    - set gpu_sm100_or_newer when gpu is in ['b200', 'gb200']

    Args:
        args: Parsed CLI args that include `gpu`.
        pp_size: Pipeline parallel size to decide comm chunk size.
        user_buffer_registration: Optional flag to enable user buffer registration.
    """
    from nemo.lightning.run.plugins import PerfEnvPlugin

    gpu_str = getattr(args, "gpu", "").lower()
    enable_vboost = args.enable_vboost
    gpu_sm100_or_newer = gpu_str in ["b200", "gb200"]
    nccl_pp_comm_chunksize = 2097152 if (pp_size is not None and pp_size > 1) else None
    user_buf = bool(user_buffer_registration) if user_buffer_registration is not None else False

    return PerfEnvPlugin(
        enable_vboost=enable_vboost,
        nccl_pp_comm_chunksize=nccl_pp_comm_chunksize,
        gpu_sm100_or_newer=gpu_sm100_or_newer,
        user_buffer_registration=user_buf,
    )