Spaces:
Runtime error
Runtime error
File size: 25,680 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from pathlib import Path
from typing import List, Optional
import nemo_run as run
import pandas as pd
from numpy import nan
from nemo.collections.llm.gpt.data.mock import MockDataModule
from nemo.collections.llm.recipes.precision.mixed_precision import (
bf16_with_fp8_current_scaling_mixed,
bf16_with_fp8_mixed,
bf16_with_fp8_subchannel_scaling_mixed,
bf16_with_mxfp8_mixed,
)
from nemo.lightning.pytorch.callbacks.flops_callback import FLOPsMeasurementCallback
from nemo.lightning.pytorch.callbacks.model_checkpoint import ModelCheckpoint
from nemo.utils import logging
from .utils import get_comm_overlap_callback_idx
def get_csv_configs(gpu: str, task: str, model_name: str, model_size: str, args) -> pd.DataFrame:
"""
Get recommended configs tuned for performance from a csv file.
User (command line) provided args override the recommended configs.
"""
script_dir = str(Path(__file__).parent.absolute())
recommended_configs_csv = os.path.join(script_dir, "recommended_model_configs", f"model_configs_{gpu}.csv")
logging.info(f"Using {recommended_configs_csv} for loading default recommended model configs")
config_df = pd.DataFrame()
if os.path.isfile(recommended_configs_csv):
df = pd.read_csv(recommended_configs_csv)
config_df = df[
(df["task"] == task)
& (df["model"] == model_name)
& (df["size"] == model_size)
& (df["dtype"] == args.compute_dtype)
& (args.num_gpus is None or df['num_gpus'] == args.num_gpus)
]
config_df = config_df.replace({nan: None})
if len(config_df) == 0:
logging.warning(f"Missing performance configs for {task}-{model_name}-{model_size}-{args.compute_dtype}")
logging.warning("Make sure you provide all necessary arguments in the command line")
config = config_df.to_dict(orient='records')[0] if len(config_df) > 0 else {}
return config
def get_user_configs(gpu: str, task: str, model_name: str, model_size: str, args) -> List[int]:
"""
Choose recommended configs tuned for performance from a csv file if available.
User (command line) provided args override the recommended configs.
NOTE: pre-train and PEFT recommended configs available for H100 and B200.
Args:
gpu (str): target GPU machine for experiment. Options- ['h100', 'b200']
task (str): experiment task. Options- ['pre_train', 'sft', 'lora']
model_name (str): target model for experiment. E.g.: 'llama3', 'mixtral'
model_size (str): size of target model. E.g.: '8b' (for llama3)
"""
config = get_csv_configs(gpu.lower(), task, model_name, model_size, args)
if gpu.lower() == "gb200" and args.gpus_per_node > 4:
args.gpus_per_node = 4
logging.warning("GB200 has 4 GPUs per node. Setting gpus_per_node to 4.")
num_gpus = config.get("num_gpus") if args.num_gpus is None else args.num_gpus
num_nodes = -(num_gpus // -args.gpus_per_node) # ceil division
mbs = config.get("mbs") if args.micro_batch_size is None else args.micro_batch_size
gbs = config.get("gbs") if args.global_batch_size is None else args.global_batch_size
tp_size = config.get("tp_size") if args.tensor_parallel_size is None else args.tensor_parallel_size
pp_size = config.get("pp_size") if args.pipeline_parallel_size is None else args.pipeline_parallel_size
cp_size = config.get("cp_size") if args.context_parallel_size is None else args.context_parallel_size
ep_size = config.get("ep_size") if args.expert_parallel_size is None else args.expert_parallel_size
vp_size = args.virtual_pipeline_parallel_size
vp_size = config.get("vp_size") if vp_size is None else vp_size
etp_size = args.expert_tensor_parallel_size
etp_size = config.get("etp_size") if etp_size is None else etp_size
enable_cuda_graphs = config.get("cuda_graphs") if args.cuda_graphs is None else args.cuda_graphs
enable_cuda_graphs = False if enable_cuda_graphs is None else bool(int(enable_cuda_graphs))
use_mcore_fsdp = config.get("use_mcore_fsdp") if args.use_mcore_fsdp is None else args.use_mcore_fsdp
use_mcore_fsdp = False if use_mcore_fsdp is None else bool(int(use_mcore_fsdp))
recompute_layers = config.get("recompute_layers") if args.recompute_layers is None else args.recompute_layers
recompute_layers = 0 if recompute_layers is None else int(recompute_layers)
activation_offload_layers = (
config.get("activation_offload_layers")
if args.activation_offload_layers is None
else args.activation_offload_layers
)
activation_offload_layers = 0 if activation_offload_layers is None else int(activation_offload_layers)
if args.recompute_modules is not None:
recompute_modules = args.recompute_modules
assert isinstance(recompute_modules, list), "recompute_modules must be a list"
elif config.get("recompute_modules") is not None:
recompute_modules = config.get("recompute_modules").split('/')
else:
recompute_modules = None
keep_fsdp_fp8_transpose_cache = (
config.get("keep_fsdp_fp8_transpose_cache")
if args.keep_fsdp_fp8_transpose_cache is None
else args.keep_fsdp_fp8_transpose_cache
)
keep_fsdp_fp8_transpose_cache = (
False if keep_fsdp_fp8_transpose_cache is None else bool(int(keep_fsdp_fp8_transpose_cache))
)
use_user_buffer_registration = (
config.get("use_user_buffer_registration")
if args.use_user_buffer_registration is None
else args.use_user_buffer_registration
)
use_user_buffer_registration = (
False if use_user_buffer_registration is None else bool(int(use_user_buffer_registration))
)
use_sharp = config.get("use_sharp") if args.use_sharp is None else args.use_sharp
use_sharp = False if use_sharp is None else bool(int(use_sharp))
kwargs = num_nodes, mbs, gbs, tp_size, pp_size, cp_size, vp_size, ep_size, etp_size
kwargs = [int(arg) if arg is not None else arg for arg in kwargs]
kwargs += [
enable_cuda_graphs,
use_mcore_fsdp,
recompute_layers,
activation_offload_layers,
recompute_modules,
keep_fsdp_fp8_transpose_cache,
use_user_buffer_registration,
use_sharp,
]
# print the received arguments for users to debug
logging.info("Received model parallel configs: ")
logging.info(f"{num_nodes=}")
logging.info(f"num_gpus_per_node={args.gpus_per_node}")
logging.info(f"{mbs=}")
logging.info(f"{gbs=}")
logging.info(f"{tp_size=}")
logging.info(f"{pp_size=}")
logging.info(f"{cp_size=}")
logging.info(f"{vp_size=}")
logging.info(f"{ep_size=}")
logging.info(f"{etp_size=}")
logging.info(f"{enable_cuda_graphs=}")
logging.info(f"{use_mcore_fsdp=}")
logging.info(f"{recompute_layers=}")
logging.info(f"{activation_offload_layers=}")
logging.info(f"{recompute_modules=}")
logging.info(f"{keep_fsdp_fp8_transpose_cache=}")
logging.info(f"{use_user_buffer_registration=}")
logging.info(f"{use_sharp=}")
return kwargs
def set_mcore_fsdp_configs(recipe, comm_overlap_callback_idx: int | None, tp_size: int | None):
"""
Set Mcore FSDP related configs.
"""
recipe.model.config.init_model_with_meta_device = True
recipe.trainer.strategy.fsdp = "megatron"
recipe.trainer.strategy.ddp.data_parallel_sharding_strategy = "optim_grads_params"
# At fp32 gradient, `recipe.trainer.strategy.ddp.gradient_reduce_div_fusion` is used for fusion
if recipe.trainer.plugins.grad_reduce_in_fp32:
recipe.trainer.strategy.ddp.average_in_collective = False
recipe.trainer.strategy.ddp.keep_fp8_transpose_cache = False
try:
recipe.trainer.strategy.ddp.keep_fp8_transpose_cache = False
except AttributeError:
recipe.trainer.strategy.ddp.keep_fp8_transpose_cache_when_using_custom_fsdp = False
logging.warning(
"Deprecation Notice: `keep_fp8_transpose_cache_when_using_custom_fsdp` "
"will be deprecated in M-Core 0.14. "
"Please use `keep_fsdp_fp8_transpose_cache` instead."
)
recipe.model.config.gradient_accumulation_fusion = False
if (
comm_overlap_callback_idx is not None
and recipe.trainer.callbacks[comm_overlap_callback_idx].defer_embedding_wgrad_compute
):
logging.warning("Disabling deferring embedding wgrad compute because it cannot work with FSDP together.")
recipe.trainer.callbacks[comm_overlap_callback_idx].defer_embedding_wgrad_compute = False
return recipe
def set_precision_configs(recipe, compute_dtype: str, fp8_recipe: str | None = None):
"""
Set precision related configs.
"""
if compute_dtype is None:
return recipe
if compute_dtype.lower() == "bf16":
recipe.optim.config.use_precision_aware_optimizer = True
if compute_dtype is not None and compute_dtype.lower() == "fp8":
if fp8_recipe is None:
fp8_recipe = "ds"
if fp8_recipe.lower() == "ds":
recipe.trainer.plugins = bf16_with_fp8_mixed()
elif fp8_recipe.lower() == "cs":
recipe.trainer.plugins = bf16_with_fp8_current_scaling_mixed()
# disable first/last layer bf16 for benchmarking
recipe.trainer.plugins.first_last_layers_bf16 = False
elif fp8_recipe.lower() == "mxfp8":
recipe.trainer.plugins = bf16_with_mxfp8_mixed()
elif fp8_recipe.lower() == "ss":
recipe.trainer.plugins = bf16_with_fp8_subchannel_scaling_mixed()
recipe.trainer.plugins.grad_reduce_in_fp32 = False
# Enable reuse_grad_buf_for_mxfp8_param_ag for MXFP8 and disable AG overlap
# because it is not supported with reuse_grad_buf_for_mxfp8_param_ag
if compute_dtype.lower() == "fp8" and fp8_recipe.lower() == "mxfp8":
comm_overlap_callback_idx = get_comm_overlap_callback_idx(recipe.trainer.callbacks)
if comm_overlap_callback_idx is not None:
recipe.trainer.callbacks[comm_overlap_callback_idx].overlap_param_gather = False
logging.warning(
"When using MXFP8, to reduce memory usage, we use reuse_grad_buf_for_mxfp8_param_ag. "
"Disabling AG overlap because it is not supported with reuse_grad_buf_for_mxfp8_param_ag."
)
return recipe
def set_recompute_configs(
recipe,
recompute_layers: int,
activation_offload_layers: int,
recompute_modules: Optional[List[str]],
):
"""
Set activation recomputing and offloading related configs.
"""
if recompute_layers > 0:
recipe.model.config.recompute_granularity = "full"
recipe.model.config.recompute_method = "block"
recipe.model.config.recompute_num_layers = recompute_layers
# Activation cpu offloading
if activation_offload_layers > 0:
recipe.model.config.cpu_offloading = True
recipe.model.config.cpu_offloading_weights = False
recipe.model.config.cpu_offloading_num_layers = activation_offload_layers
# Activation recompute configs
if recompute_modules is not None:
recipe.model.config.recompute_modules = recompute_modules
assert (
recipe.model.config.recompute_granularity == "selective"
), "recompute_granularity must be selective when recompute_modules is provided"
assert (
recipe.model.config.recompute_num_layers is None
), "recompute_num_layers must be None when recompute_modules is provided"
return recipe
def set_cuda_graph_configs(recipe, enable_cuda_graphs: bool, task: str):
"""
Set CUDA graph related configs.
"""
recipe.model.config.enable_cuda_graph = enable_cuda_graphs
recipe.trainer.strategy.use_te_rng_tracker = enable_cuda_graphs
if (
task in ["none", "lora"]
and hasattr(recipe.data, "packed_sequence_specs")
and recipe.data.packed_sequence_specs is not None
):
recipe.data.packed_sequence_specs.pad_cu_seqlens = enable_cuda_graphs
return recipe
def set_full_iteration_cuda_graph_configs(recipe, pp_size: int | None, vp_size: int | None):
"""
Set optimizations required for full iteration CUDA graphs based on specific conditions.
"""
if not (
hasattr(recipe.model, 'config')
and hasattr(recipe.model.config, 'cuda_graph_scope')
and recipe.model.config.cuda_graph_scope == 'full_iteration'
):
return recipe
cuda_graph_configs = []
if recipe.trainer.strategy.ddp.check_for_nan_in_grad != False:
recipe.trainer.strategy.ddp.check_for_nan_in_grad = False
cuda_graph_configs.append("check_for_nan_in_grad=False")
logging.warning("For full iteration CUDA graphs, we need to disable check_for_nan_in_grad")
if pp_size and pp_size > 1:
if recipe.model.config.variable_seq_lengths != False:
recipe.model.config.variable_seq_lengths = False
cuda_graph_configs.append("variable_seq_lengths=False")
logging.warning("For full iteration CUDA graphs, we need to disable variable_seq_lengths")
if recipe.model.config.batch_p2p_sync != False:
recipe.model.config.batch_p2p_sync = False
cuda_graph_configs.append("batch_p2p_sync=False")
logging.warning("For full iteration CUDA graphs, we need to disable batch_p2p_sync")
comm_overlap_callback_idx = get_comm_overlap_callback_idx(recipe.trainer.callbacks)
if comm_overlap_callback_idx is not None:
callback = recipe.trainer.callbacks[comm_overlap_callback_idx]
if pp_size and pp_size > 1:
if callback.batch_p2p_comm != False:
callback.batch_p2p_comm = False
cuda_graph_configs.append("batch_p2p_comm=False")
logging.warning("For full iteration CUDA graphs, disabling batch_p2p_comm would improve memory usage")
if vp_size and vp_size > 1:
if callback.overlap_param_gather_with_optimizer_step != False:
callback.overlap_param_gather_with_optimizer_step = False
cuda_graph_configs.append("overlap_param_gather_with_optimizer_step=False")
logging.warning(
"For full iteration CUDA graphs, we need to disable overlap_param_gather_with_optimizer_step"
)
else:
logging.warning("MegatronCommOverlapCallback not found in recipe.trainer.callbacks")
# Log all applied configurations
if cuda_graph_configs:
logging.info(f"Applied full iteration CUDA graph optimizations: {', '.join(cuda_graph_configs)}")
return recipe
def set_perf_optimization_configs(
recipe,
use_mcore_fsdp: bool,
enable_cuda_graphs: bool,
task: str,
tp_size: int | None,
pp_size: int | None,
vp_size: int | None,
compute_dtype: str,
fp8_recipe: str | None,
recompute_layers: int,
activation_offload_layers: int,
recompute_modules: Optional[List[str]],
use_fsdp_double_buffer: Optional[bool] = None,
use_user_buffer_registration: Optional[bool] = None,
use_sharp: Optional[bool] = None,
keep_fsdp_fp8_transpose_cache: Optional[bool] = None,
):
"""
Set performance optimization related configs.
"""
# enable cross entropy fusion with TE kernel
recipe.model.config.cross_entropy_fusion_impl = "te"
if use_fsdp_double_buffer:
assert use_mcore_fsdp == True, "use_fsdp_double_buffer requires use_mcore_fsdp to be True"
if use_mcore_fsdp and enable_cuda_graphs:
logging.warning("Currently, cuda graphs are not supported with FSDP. Disabling cuda graphs.")
enable_cuda_graphs = False
recipe = set_cuda_graph_configs(recipe, enable_cuda_graphs, task)
if enable_cuda_graphs:
recipe = set_full_iteration_cuda_graph_configs(recipe, pp_size, vp_size)
if use_mcore_fsdp:
comm_overlap_callback_idx = get_comm_overlap_callback_idx(recipe.trainer.callbacks)
recipe = set_mcore_fsdp_configs(recipe, comm_overlap_callback_idx, tp_size)
recipe = set_precision_configs(recipe, compute_dtype, fp8_recipe)
recipe = set_recompute_configs(recipe, recompute_layers, activation_offload_layers, recompute_modules)
recipe.trainer.strategy.use_sharp = bool(use_sharp)
is_ddp_obj = hasattr(recipe.trainer.strategy, "ddp") and not isinstance(recipe.trainer.strategy.ddp, str)
if use_user_buffer_registration and not is_ddp_obj:
logging.warning("DDP is not configured. Cannot use user buffer registration.")
if is_ddp_obj:
# Disable local gradient checker at non-debugging mode
recipe.trainer.strategy.ddp.check_for_nan_in_grad = False
recipe.trainer.strategy.ddp.check_for_large_grads = False
recipe.trainer.strategy.ddp.nccl_ub = bool(use_user_buffer_registration)
recipe.trainer.strategy.ddp.fsdp_double_buffer = bool(use_fsdp_double_buffer)
try:
recipe.trainer.strategy.ddp.keep_fp8_transpose_cache = bool(keep_fsdp_fp8_transpose_cache)
except AttributeError:
recipe.trainer.strategy.ddp.keep_fp8_transpose_cache_when_using_custom_fsdp = bool(
keep_fsdp_fp8_transpose_cache
)
logging.warning(
"Deprecation Notice: `keep_fp8_transpose_cache_when_using_custom_fsdp` "
"will be deprecated in M-Core 0.14. "
"Please use `keep_fsdp_fp8_transpose_cache` instead."
)
return recipe
def set_primary_perf_configs(
recipe,
task: str,
num_nodes: int,
num_gpus_per_node: int,
mbs: int,
gbs: int,
max_steps: int,
tp_size: int,
pp_size: int,
cp_size: int,
vp_size: int,
ep_size: int,
etp_size: Optional[int] = None,
enable_cuda_graphs: bool = False,
use_mcore_fsdp: bool = False,
use_fsdp_double_buffer: Optional[bool] = None,
use_user_buffer_registration: Optional[bool] = None,
use_sharp: Optional[bool] = None,
recompute_layers: int = 0,
activation_offload_layers: int = 0,
compute_dtype: str = None,
fp8_recipe: str = None,
recompute_modules: Optional[List[str]] = None,
nccl_communicator_config_path: str = None,
keep_fsdp_fp8_transpose_cache: Optional[bool] = None,
use_te_op_fuser: Optional[bool] = None,
use_te_act_func: Optional[bool] = None,
act_func_fp8_input_store: Optional[bool] = None,
):
"""Set experiment configs we usually tune for performance of all models."""
# nemo.lightning.Trainer configs
recipe.trainer.num_nodes = num_nodes
recipe.trainer.devices = num_gpus_per_node
recipe.trainer.max_steps = max_steps
recipe.trainer.val_check_interval = max_steps
recipe.trainer.limit_val_batches = 0
# lightning.pytorch.LightningDataModule configs
recipe.data.micro_batch_size = mbs
recipe.data.global_batch_size = gbs
if recipe.data.__fn_or_cls__ == MockDataModule:
recipe.data.num_train_samples = max_steps * gbs # ensure only 1 epoch for whole run
# parallelism configs
recipe.trainer.strategy.tensor_model_parallel_size = tp_size
recipe.trainer.strategy.pipeline_model_parallel_size = pp_size
recipe.trainer.strategy.context_parallel_size = cp_size
recipe.trainer.strategy.virtual_pipeline_model_parallel_size = None if vp_size == 1 else vp_size
recipe.trainer.strategy.expert_model_parallel_size = ep_size
recipe.trainer.strategy.expert_tensor_parallel_size = etp_size
recipe.trainer.strategy.sequence_parallel = bool(tp_size > 1)
if nccl_communicator_config_path is not None:
recipe.trainer.strategy.nccl_communicator_config_path = nccl_communicator_config_path
# callback configs
comm_overlap_callback_idx = get_comm_overlap_callback_idx(recipe.trainer.callbacks)
dp_size = (num_nodes * num_gpus_per_node) / (tp_size * pp_size * cp_size)
if comm_overlap_callback_idx is not None:
# WARNING: If True, checkpointing (if enabled) might not work
recipe.trainer.callbacks[comm_overlap_callback_idx].overlap_param_gather_with_optimizer_step = bool(
dp_size > 1 and pp_size > 1 and vp_size and vp_size > 1
)
# te op fuser for MLP part
if use_te_op_fuser:
assert recipe.model.config.num_moe_experts is None, "use_te_op_fuser is not supported for MOE models"
if hasattr(recipe.model.config, "use_transformer_engine_op_fuser"):
recipe.model.config.use_transformer_engine_op_fuser = True
else:
logging.warning("use_transformer_engine_op_fuser is not supported for this version of MCORE.")
# te activation function for MLP part
recipe.model.config.use_te_activation_func = use_te_act_func or False
assert (
not act_func_fp8_input_store
) or use_te_act_func, "act_func_fp8_input_store requires use_te_act_func to be True"
recipe.model.config.activation_func_fp8_input_store = act_func_fp8_input_store or False
recipe = set_perf_optimization_configs(
recipe=recipe,
use_mcore_fsdp=use_mcore_fsdp,
enable_cuda_graphs=enable_cuda_graphs,
task=task,
tp_size=tp_size,
pp_size=pp_size,
vp_size=vp_size,
compute_dtype=compute_dtype,
fp8_recipe=fp8_recipe,
recompute_layers=recompute_layers,
activation_offload_layers=activation_offload_layers,
recompute_modules=recompute_modules,
use_fsdp_double_buffer=use_fsdp_double_buffer,
use_user_buffer_registration=use_user_buffer_registration,
use_sharp=use_sharp,
keep_fsdp_fp8_transpose_cache=keep_fsdp_fp8_transpose_cache,
)
return recipe
def set_exp_logging_configs(
recipe,
task: str,
domain: str,
model_name: str,
enable_tb: bool,
enable_wd: bool,
wandb_prj_name: str,
wandb_job_name: str,
):
"""Set experiment logging configs."""
if task == "pre_train" and domain == "llm":
recipe.trainer.callbacks.append(
run.Config(
FLOPsMeasurementCallback,
model_config=recipe.model.config,
data_config=recipe.data,
model_name=model_name,
)
)
if not enable_tb: # tensorboard adds performance overhead.
recipe.log.tensorboard = None
recipe.trainer.logger = False
else:
# default path is NOT intuitive- `<log_dir>/code/nemo_experiments/tb_logs/default/<tfevents_file>`
recipe.log.log_dir = "/nemo_run/lightning_logs" # saves file at- `<log_dir>/lightning_logs/tb_logs
if enable_wd:
from nemo.collections.llm.recipes.log.default import wandb_logger
recipe.log.wandb = wandb_logger(project=wandb_prj_name, name=wandb_job_name)
# Misc. for overall faster experiment runtime
recipe.log.ckpt = None
# disable checkpointing if no ModelCheckpoint callback is found
callbacks = recipe.trainer.callbacks
checkpoint_callback_idx = None
if callbacks: # default is None in lightning
for idx, callback in enumerate(callbacks):
if callback.__fn_or_cls__ == ModelCheckpoint:
checkpoint_callback_idx = idx
break
recipe.trainer.enable_checkpointing = checkpoint_callback_idx is not None
recipe.trainer.log_every_n_steps = 1
return recipe
def args_sanity_check(args: dict) -> None:
"""
Check the sanity of argument settings
"""
if args.wandb:
assert args.wandb_key is not None, "wandb logger needs \"wandb_key\""
assert args.wandb_prj_name is not None, "wandb logger needs \"wandb_prj_name\""
assert args.wandb_job_name is not None, "wandb logger needs \"wandb_job_name\""
def build_perf_env_plugin(args, pp_size: int | None = None, user_buffer_registration: Optional[bool] = None):
"""
Create a PerfEnvPlugin with consistent defaults across scripts.
- enable_vboost only when gpu is h100
- set nccl_pp_comm_chunksize when pipeline parallelism is used
- set gpu_sm100_or_newer when gpu is in ['b200', 'gb200']
Args:
args: Parsed CLI args that include `gpu`.
pp_size: Pipeline parallel size to decide comm chunk size.
user_buffer_registration: Optional flag to enable user buffer registration.
"""
from nemo.lightning.run.plugins import PerfEnvPlugin
gpu_str = getattr(args, "gpu", "").lower()
enable_vboost = args.enable_vboost
gpu_sm100_or_newer = gpu_str in ["b200", "gb200"]
nccl_pp_comm_chunksize = 2097152 if (pp_size is not None and pp_size > 1) else None
user_buf = bool(user_buffer_registration) if user_buffer_registration is not None else False
return PerfEnvPlugin(
enable_vboost=enable_vboost,
nccl_pp_comm_chunksize=nccl_pp_comm_chunksize,
gpu_sm100_or_newer=gpu_sm100_or_newer,
user_buffer_registration=user_buf,
)
|