File size: 10,115 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# Copyright (c) 2025, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from os.path import basename, splitext
from typing import List, Optional

import nemo_run as run

from nemo.collections.llm.recipes.deepseek_v3 import pretrain_recipe
from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer
from nemo.lightning.pytorch.callbacks.megatron_enable_experimental_callback import MegatronEnableExperimentalCallback
from nemo.lightning.pytorch.callbacks.moe_token_drop import MegatronTokenDropCallback
from nemo.lightning.run.plugins import MemoryProfilePlugin, NsysPlugin

from ..argument_parser import parse_additional_slurm_params, parse_cli_args
from ..executors import slurm_executor
from ..helpers import (
    args_sanity_check,
    build_perf_env_plugin,
    get_user_configs,
    set_exp_logging_configs,
    set_primary_perf_configs,
)
from ..utils import dump_config_diff_from_base_recipe, hf_tokenizer

HF_MODEL_URI = "deepseek-ai/DeepSeek-V3-Base"
USE_TOKEN_DROP = True  # Use token drop callback


def override_recipe_configs(
    args: str,
    num_nodes: int,
    mbs: int,
    gbs: int,
    tp_size: int,
    pp_size: int,
    cp_size: int,
    vp_size: int,
    ep_size: int,
    etp_size: int,
    enable_cuda_graphs: bool,
    use_mcore_fsdp: bool,
    recompute_layers: int,
    activation_offload_layers: int,
    recompute_modules: Optional[List[str]] = None,
    use_user_buffer_registration: Optional[bool] = None,
    use_sharp: Optional[bool] = None,
):
    """
    DeepSeek V3 pre-train recipe aimed at achieving best possible performance.
    """
    recipe = pretrain_recipe(performance_mode=True)

    # reset recompute args in the default recipe
    if args.recompute_modules is None:
        recipe.model.config.recompute_granularity = None
        recipe.model.config.recompute_method = None
        recipe.model.config.recompute_num_layers = None
        recipe.model.config.recompute_modules = None

    if not hasattr(recipe.trainer, "callbacks") or recipe.trainer.callbacks is None:
        recipe.trainer.callbacks = []

    # Token dispatcher configs. For H100 we use deepEP and for Blackwell,
    # because deepEP is not supported yet, we use all-to-all dispatcher with
    # token drop. After deepEP is supported, we can use deepEP dispatcher.
    if args.gpu.lower() in ['h100']:
        recipe.model.config.moe_token_dispatcher_type = "flex"
        recipe.model.config.moe_enable_deepep = True
        recipe.model.config.moe_shared_expert_overlap = False  # not supported for deepEP
        # use force load balance for reducing variance in benchmarking
        recipe.model.config.moe_router_force_load_balancing = True
    else:
        recipe.model.config.moe_token_dispatcher_type = "alltoall"
        recipe.model.config.moe_enable_deepep = False
        recipe.model.config.moe_shared_expert_overlap = True
        if USE_TOKEN_DROP:
            recipe.trainer.callbacks.append(run.Config(MegatronTokenDropCallback))

    # Performance optimization knobs
    recipe.model.config.moe_permute_fusion = True
    recipe.model.config.apply_rope_fusion = True
    recipe.trainer.callbacks.append(run.Config(MegatronEnableExperimentalCallback))

    # Pipeline parallelism configs. We infer PP layout from the provided PP and VP size
    map_pp_vp_to_layout = {
        (1, 1): None,
        (4, 1): [['embedding'] + ['decoder'] * 16, ['decoder'] * 16, ['decoder'] * 16, ['decoder'] * 13 + ['loss']],
        (8, 1): [['embedding'] + ['decoder'] * 8] + [['decoder'] * 8] * 6 + [['decoder'] * 5 + ['loss']],
        (4, 2): [['embedding'] + ['decoder'] * 8] + [['decoder'] * 8] * 6 + [['decoder'] * 5 + ['loss']],
        (16, 1): [['embedding'] + ['decoder'] * 4] + [['decoder'] * 4] * 14 + [['decoder', 'loss']],
        (8, 2): [['embedding'] + ['decoder'] * 4] + [['decoder'] * 4] * 14 + [['decoder', 'loss']],
        (4, 4): [['embedding'] + ['decoder'] * 4] + [['decoder'] * 4] * 14 + [['decoder', 'loss']],
    }
    pp_size = pp_size or 1
    vp_size = vp_size or 1
    if (pp_size, vp_size) not in map_pp_vp_to_layout:
        raise ValueError(
            f"Invalid PP and VP size: {pp_size} and {vp_size} to infer PP layout "
            f"for DeepSeek V3. Known PP and VP combinations: {map_pp_vp_to_layout.keys()}"
        )
    layout = map_pp_vp_to_layout[(pp_size, vp_size)]

    if layout is not None:
        layout = list([list(x) for x in layout])  # yield all the elements
    recipe.trainer.strategy.pipeline_model_parallel_layout = layout

    # The following knobs are not needed if we specify layout
    recipe.trainer.strategy.account_for_embedding_in_pipeline_split = False
    recipe.trainer.strategy.account_for_loss_in_pipeline_split = False
    recipe.trainer.strategy.num_layers_in_first_pipeline_stage = None
    recipe.trainer.strategy.num_layers_in_last_pipeline_stage = None

    recipe = set_primary_perf_configs(
        recipe,
        "pre_train",
        num_nodes,
        args.gpus_per_node,
        mbs,
        gbs,
        args.max_steps,
        tp_size,
        pp_size,
        cp_size,
        vp_size,
        ep_size,
        etp_size,
        enable_cuda_graphs=enable_cuda_graphs,
        use_mcore_fsdp=use_mcore_fsdp,
        use_fsdp_double_buffer=args.use_fsdp_double_buffer,
        use_user_buffer_registration=use_user_buffer_registration,
        use_sharp=use_sharp,
        recompute_layers=recompute_layers,
        activation_offload_layers=activation_offload_layers,
        compute_dtype=args.compute_dtype,
        fp8_recipe=args.fp8_recipe,
        recompute_modules=recompute_modules,
        use_te_act_func=args.use_te_act_func,
        act_func_fp8_input_store=args.act_func_fp8_input_store,
    )
    recipe = set_exp_logging_configs(
        recipe,
        "pre_train",
        "llm",
        "deepseekv3",
        args.tensorboard,
        args.wandb,
        args.wandb_prj_name,
        args.wandb_job_name,
    )

    # data module configs
    if args.use_hf_tokenizer:
        recipe.data.tokenizer = hf_tokenizer(HF_MODEL_URI)
    else:
        recipe.data.tokenizer = run.Config(
            get_nmt_tokenizer, library="null", model_name="NullTokenizer", vocab_size=129280
        )
    recipe.model.tokenizer = recipe.data.tokenizer

    return recipe


if __name__ == "__main__":
    args = parse_cli_args().parse_args()
    args_sanity_check(args)
    # Parse additional SLURM parameters if provided
    additional_slurm_params = None
    if hasattr(args, 'additional_slurm_params') and args.additional_slurm_params:
        additional_slurm_params = parse_additional_slurm_params(args.additional_slurm_params)

    kwargs = get_user_configs(args.gpu.lower(), "pre_train", "deepseek", "v3", args)
    (
        num_nodes,
        mbs,
        gbs,
        tp_size,
        pp_size,
        cp_size,
        vp_size,
        ep_size,
        etp_size,
        enable_cuda_graphs,
        use_mcore_fsdp,
        recompute_layers,
        activation_offload_layers,
        recompute_modules,
        _,  # keep_fsdp_fp8_transpose_cache
        use_user_buffer_registration,
        use_sharp,
    ) = kwargs[:17]

    recipe = override_recipe_configs(
        args,
        num_nodes,
        mbs,
        gbs,
        tp_size,
        pp_size,
        cp_size,
        vp_size,
        ep_size,
        etp_size,
        enable_cuda_graphs,
        use_mcore_fsdp,
        recompute_layers,
        activation_offload_layers,
        recompute_modules,
        use_user_buffer_registration,
        use_sharp,
    )

    exp_config = f"{num_nodes}nodes_tp{tp_size}_pp{pp_size}_cp{cp_size}_vp{vp_size}_ep{ep_size}_{mbs}mbs_{gbs}gbs"
    exp_name = f"{splitext(basename(__file__))[0]}_{args.compute_dtype}_{exp_config}"

    executor = slurm_executor(
        args.gpu.lower(),
        args.account,
        args.partition,
        args.log_dir,
        num_nodes,
        args.gpus_per_node,
        args.time_limit,
        args.container_image,
        custom_mounts=args.custom_mounts,
        custom_env_vars={},
        hf_token=args.hf_token,
        nemo_home=args.nemo_home,
        wandb_key=args.wandb_key,
        network='sharp' if use_sharp else None,
        additional_slurm_params=additional_slurm_params,
    )

    plugins = [build_perf_env_plugin(args, pp_size=pp_size)]

    if args.enable_nsys:
        plugins.append(NsysPlugin(start_step=5, end_step=6))
    if args.enable_memory_profile:
        assert args.memory_profile_out_path is not None
        plugins.append(MemoryProfilePlugin(dir=args.memory_profile_out_path))

    with run.Experiment(exp_name) as exp:
        exp.add(
            recipe,
            executor=executor,
            name=exp_name,
            plugins=plugins,
        )

        if not args.dryrun:
            exp.run(sequential=True, detach=args.detach)
        else:
            exp.dryrun()

    if args.dump_config_diff_from_base_recipe:
        output_dir = exp.jobs[0].executor.job_dir
        # dump difference from base recipe
        base_recipe = pretrain_recipe(performance_mode=False)
        file_name = f"diff_from_base_recipe_{args.compute_dtype}.diff"
        dump_config_diff_from_base_recipe(base_recipe, recipe, output_dir, file_name=file_name)
        # dump difference from default perf recipe
        default_perf_recipe = pretrain_recipe(performance_mode=True)
        file_name = f"diff_from_default_perf_recipe_{args.compute_dtype}.diff"
        dump_config_diff_from_base_recipe(default_perf_recipe, recipe, output_dir, file_name=file_name)