File size: 8,857 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Copyright (c) 2025, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from os.path import basename, splitext

import fiddle as fdl
import fiddle._src.experimental.dataclasses as fdl_dc
import nemo_run as run

from nemo.collections.llm.recipes.llama31_405b import pretrain_recipe
from nemo.collections.llm.recipes.tp_overlap_configs.userbuffers import (
    userbuffers_bf16_b200_h16384_tp4_cp2_mbs1_seqlen8192,
    userbuffers_bf16_h100_h16384_tp8_cp2_mbs1_seqlen8192,
    userbuffers_fp8_b200_h16384_tp4_cp2_mbs1_seqlen8192,
    userbuffers_fp8_h100_h16384_tp8_cp2_mbs1_seqlen8192,
)
from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer
from nemo.lightning.run.plugins import MemoryProfilePlugin, NsysPlugin

from ..argument_parser import parse_additional_slurm_params, parse_cli_args
from ..executors import slurm_executor
from ..helpers import (
    args_sanity_check,
    build_perf_env_plugin,
    get_user_configs,
    set_exp_logging_configs,
    set_primary_perf_configs,
)
from ..utils import dump_config_diff_from_base_recipe, get_comm_overlap_callback_idx, hf_tokenizer


def override_recipe_configs(
    args: str,
    num_nodes: int,
    mbs: int,
    gbs: int,
    tp_size: int,
    pp_size: int,
    cp_size: int,
    vp_size: int,
    ep_size: int,
    enable_cuda_graphs: bool,
    use_mcore_fsdp: bool,
    recompute_layers: int,
    activation_offload_layers: int,
):
    """
    llama3 405b pre-train recipe aimed at achieving best possible performance.

    NOTE: Use fp8 precision training with caution. It might not give desirable results.
    """
    recipe = pretrain_recipe(performance_mode=True)

    recipe = set_primary_perf_configs(
        recipe,
        "pre_train",
        num_nodes,
        args.gpus_per_node,
        mbs,
        gbs,
        args.max_steps,
        tp_size,
        pp_size,
        cp_size,
        vp_size,
        ep_size,
        enable_cuda_graphs=enable_cuda_graphs,
        use_mcore_fsdp=use_mcore_fsdp,
        use_fsdp_double_buffer=args.use_fsdp_double_buffer,
        use_user_buffer_registration=args.use_user_buffer_registration,
        use_sharp=args.use_sharp,
        recompute_layers=recompute_layers,
        activation_offload_layers=activation_offload_layers,
        compute_dtype=args.compute_dtype,
        fp8_recipe=args.fp8_recipe,
        nccl_communicator_config_path=args.nccl_communicator_config_path,
        use_te_op_fuser=args.use_te_op_fuser or use_mcore_fsdp,
        use_te_act_func=args.use_te_act_func,
        act_func_fp8_input_store=args.act_func_fp8_input_store,
    )
    recipe = set_exp_logging_configs(
        recipe, "pre_train", "llm", "llama3", args.tensorboard, args.wandb, args.wandb_prj_name, args.wandb_job_name
    )

    gpu_type = args.gpu.lower()

    # data module configs
    if args.use_hf_tokenizer:
        recipe.data.tokenizer = hf_tokenizer("meta-llama/Llama-3.1-405B")
    else:
        recipe.data.tokenizer = run.Config(
            get_nmt_tokenizer, library="null", model_name="NullTokenizer", vocab_size=128256
        )
        recipe.model.tokenizer = recipe.data.tokenizer

    userbuffers_bf16_h100_h16384_tp8_cp2_mbs1_seqlen8192.qkv_fprop.aggregate = False
    userbuffers_bf16_h100_h16384_tp8_cp2_mbs1_seqlen8192.proj_dgrad.aggregate = False
    userbuffers_bf16_h100_h16384_tp8_cp2_mbs1_seqlen8192.fc1_fprop.aggregate = False
    userbuffers_bf16_h100_h16384_tp8_cp2_mbs1_seqlen8192.fc2_dgrad.aggregate = False

    userbuffers_fp8_h100_h16384_tp8_cp2_mbs1_seqlen8192.qkv_fprop.aggregate = False
    userbuffers_fp8_h100_h16384_tp8_cp2_mbs1_seqlen8192.proj_dgrad.aggregate = False
    userbuffers_fp8_h100_h16384_tp8_cp2_mbs1_seqlen8192.fc1_fprop.aggregate = False
    userbuffers_fp8_h100_h16384_tp8_cp2_mbs1_seqlen8192.fc2_dgrad.aggregate = False

    ub_cfg = {
        "h100": {
            "bf16": userbuffers_bf16_h100_h16384_tp8_cp2_mbs1_seqlen8192,
            "fp8": userbuffers_fp8_h100_h16384_tp8_cp2_mbs1_seqlen8192,
        },
        "b200": {
            "bf16": userbuffers_bf16_b200_h16384_tp4_cp2_mbs1_seqlen8192,
            "fp8": userbuffers_fp8_b200_h16384_tp4_cp2_mbs1_seqlen8192,
        },
        "gb200": {
            "bf16": userbuffers_bf16_b200_h16384_tp4_cp2_mbs1_seqlen8192,
            "fp8": userbuffers_fp8_b200_h16384_tp4_cp2_mbs1_seqlen8192,
        },
    }

    comm_overlap_callback_idx = get_comm_overlap_callback_idx(recipe.trainer.callbacks)
    assert comm_overlap_callback_idx is not None, "MegatronCommOverlapCallback missing. Required for performance."

    tp_comm_overlap_cfg = ub_cfg[gpu_type][args.compute_dtype]
    # needed as tp_overlap_configs.userbuffers are dataclass objects which are unserializable
    tp_comm_overlap_cfg = fdl.cast(run.Config, fdl_dc.convert_dataclasses_to_configs(tp_comm_overlap_cfg))
    recipe.trainer.callbacks[comm_overlap_callback_idx].tp_comm_overlap_cfg = tp_comm_overlap_cfg

    if use_mcore_fsdp and gpu_type == 'gb200':
        recipe.trainer.strategy.num_distributed_optimizer_instances = (num_nodes * 4) // 64

    return recipe


if __name__ == "__main__":
    args = parse_cli_args().parse_args()
    args_sanity_check(args)
    # Parse additional SLURM parameters if provided
    additional_slurm_params = None
    if hasattr(args, 'additional_slurm_params') and args.additional_slurm_params:
        additional_slurm_params = parse_additional_slurm_params(args.additional_slurm_params)

    kwargs = get_user_configs(args.gpu.lower(), "pre_train", "llama31", "405b", args)
    (
        num_nodes,
        mbs,
        gbs,
        tp_size,
        pp_size,
        cp_size,
        vp_size,
        ep_size,
        _,
        enable_cuda_graphs,
        use_mcore_fsdp,
        recompute_layers,
        activation_offload_layers,
    ) = kwargs[:13]

    recipe = override_recipe_configs(
        args,
        num_nodes,
        mbs,
        gbs,
        tp_size,
        pp_size,
        cp_size,
        vp_size,
        ep_size,
        enable_cuda_graphs,
        use_mcore_fsdp,
        recompute_layers,
        activation_offload_layers,
    )

    exp_config = f"{num_nodes}nodes_tp{tp_size}_pp{pp_size}_cp{cp_size}_vp{vp_size}_{mbs}mbs_{gbs}gbs"
    exp_name = f"{splitext(basename(__file__))[0]}_{args.compute_dtype}_{exp_config}"

    if use_mcore_fsdp:
        # Needed to enable CuDNN LN for FSDP overlap
        env_vars = {"NVTE_NORM_FWD_USE_CUDNN": "1", "NVTE_NORM_BWD_USE_CUDNN": "1"}
    else:
        env_vars = {}

    executor = slurm_executor(
        args.gpu.lower(),
        args.account,
        args.partition,
        args.log_dir,
        num_nodes,
        args.gpus_per_node,
        args.time_limit,
        args.container_image,
        custom_mounts=args.custom_mounts,
        custom_env_vars=env_vars,
        hf_token=args.hf_token,
        nemo_home=args.nemo_home,
        wandb_key=args.wandb_key,
        network='sharp' if args.use_sharp else None,
        additional_slurm_params=additional_slurm_params,
    )

    plugins = [build_perf_env_plugin(args, pp_size=pp_size)]

    if args.enable_nsys:
        plugins.append(NsysPlugin(start_step=5, end_step=6))
    if args.enable_memory_profile:
        assert args.memory_profile_out_path is not None
        plugins.append(MemoryProfilePlugin(dir=args.memory_profile_out_path))

    with run.Experiment(exp_name) as exp:
        exp.add(
            recipe,
            executor=executor,
            name=exp_name,
            plugins=plugins,
        )

        if not args.dryrun:
            exp.run(sequential=True, detach=args.detach)
        else:
            exp.dryrun()

    if args.dump_config_diff_from_base_recipe:
        output_dir = exp.jobs[0].executor.job_dir
        # dump difference from base recipe
        base_recipe = pretrain_recipe(performance_mode=False)
        file_name = f"diff_from_base_recipe_{args.compute_dtype}.diff"
        dump_config_diff_from_base_recipe(base_recipe, recipe, output_dir, file_name=file_name)
        # dump difference from default perf recipe
        default_perf_recipe = pretrain_recipe(performance_mode=True)
        file_name = f"diff_from_default_perf_recipe_{args.compute_dtype}.diff"
        dump_config_diff_from_base_recipe(default_perf_recipe, recipe, output_dir, file_name=file_name)