Spaces:
Runtime error
Runtime error
File size: 4,371 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from os.path import basename, splitext
import nemo_run as run
from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer
from nemo.collections.vlm.recipes.neva_llama3_8b import finetune_recipe
from nemo.lightning.run.plugins import NsysPlugin
from ..argument_parser import parse_additional_slurm_params, parse_cli_args
from ..executors import slurm_executor
from ..helpers import (
args_sanity_check,
build_perf_env_plugin,
get_user_configs,
set_exp_logging_configs,
set_primary_perf_configs,
)
def override_recipe_configs(
args: str,
num_nodes: int,
mbs: int,
gbs: int,
tp_size: int,
pp_size: int,
cp_size: int,
vp_size: int,
ep_size: int,
enable_cuda_graphs: bool,
):
"""
NeVA (HF CLIP-ViT-L + llama3 8b) finetune recipe aimed at achieving best possible performance.
NOTE: Use fp8 precision training with caution. It might not give desirable results.
"""
recipe = finetune_recipe(performance_mode=True)
recipe = set_primary_perf_configs(
recipe,
"pre_train",
num_nodes,
args.gpus_per_node,
mbs,
gbs,
args.max_steps,
tp_size,
pp_size,
cp_size,
vp_size,
ep_size,
enable_cuda_graphs=enable_cuda_graphs,
compute_dtype=args.compute_dtype,
fp8_recipe=args.fp8_recipe,
use_mcore_fsdp=args.use_mcore_fsdp,
use_fsdp_double_buffer=args.use_fsdp_double_buffer,
use_user_buffer_registration=args.use_user_buffer_registration,
)
recipe = set_exp_logging_configs(
recipe,
"pre_train",
"vlm",
"neva_llama3",
args.tensorboard,
args.wandb,
args.wandb_prj_name,
args.wandb_job_name,
)
recipe.data.tokenizer = run.Config(
get_nmt_tokenizer, library="null", model_name="NullTokenizer", vocab_size=128256
)
return recipe
if __name__ == "__main__":
args = parse_cli_args().parse_args()
args_sanity_check(args)
# Parse additional SLURM parameters if provided
additional_slurm_params = None
if hasattr(args, 'additional_slurm_params') and args.additional_slurm_params:
additional_slurm_params = parse_additional_slurm_params(args.additional_slurm_params)
kwargs = get_user_configs(args.gpu.lower(), "pre_train", "neva_llama3", "8b", args)
num_nodes, mbs, gbs, tp_size, pp_size, cp_size, vp_size, ep_size, _, enable_cuda_graphs = kwargs[:10]
recipe = override_recipe_configs(
args, num_nodes, mbs, gbs, tp_size, pp_size, cp_size, vp_size, ep_size, enable_cuda_graphs
)
exp_config = f"{num_nodes}nodes_tp{tp_size}_pp{pp_size}_cp{cp_size}_vp{vp_size}_{mbs}mbs_{gbs}gbs"
exp_name = f"{splitext(basename(__file__))[0]}_{args.compute_dtype}_{exp_config}"
executor = slurm_executor(
args.gpu.lower(),
args.account,
args.partition,
args.log_dir,
num_nodes,
args.gpus_per_node,
args.time_limit,
args.container_image,
custom_mounts=args.custom_mounts,
custom_env_vars={},
hf_token=args.hf_token,
nemo_home=args.nemo_home,
wandb_key=args.wandb_key,
additional_slurm_params=additional_slurm_params,
)
plugins = [build_perf_env_plugin(args, pp_size=pp_size)]
if args.enable_nsys:
plugins.append(NsysPlugin(start_step=5, end_step=6))
with run.Experiment(exp_name) as exp:
exp.add(
recipe,
executor=executor,
name=exp_name,
plugins=plugins,
)
if not args.dryrun:
exp.run(sequential=True, detach=args.detach)
else:
exp.dryrun()
|