File size: 4,527 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright (c) 2025, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from os.path import basename, splitext

import nemo_run as run

from nemo.collections.llm.recipes.precision.mixed_precision import bf16_with_fp8_mixed
from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer
from nemo.collections.vlm.recipes.qwen25vl_7b import finetune_recipe
from nemo.lightning.run.plugins import NsysPlugin

from ..argument_parser import parse_cli_args
from ..executors import slurm_executor
from ..helpers import (
    args_sanity_check,
    build_perf_env_plugin,
    get_user_configs,
    set_exp_logging_configs,
    set_primary_perf_configs,
)


def override_recipe_configs(
    args: str,
    num_nodes: int,
    mbs: int,
    gbs: int,
    tp_size: int,
    pp_size: int,
    cp_size: int,
    vp_size: int,
    ep_size: int,
    enable_cuda_graphs: bool,
):
    """
    Qwen25VL-7B finetune recipe aimed at achieving best possible performance.

    NOTE: Use fp8 precision training with caution. It might not give desirable results.
    """
    recipe = finetune_recipe(num_nodes=num_nodes, num_gpus_per_node=args.gpus_per_node)

    recipe = set_primary_perf_configs(
        recipe,
        "finetune",
        num_nodes,
        args.gpus_per_node,
        mbs,
        gbs,
        args.max_steps,
        tp_size,
        pp_size,
        cp_size,
        vp_size,
        ep_size,
        enable_cuda_graphs=enable_cuda_graphs,
        compute_dtype=args.compute_dtype,
        fp8_recipe=args.fp8_recipe,
        use_mcore_fsdp=args.use_mcore_fsdp,
        use_fsdp_double_buffer=args.use_fsdp_double_buffer,
        use_user_buffer_registration=args.use_user_buffer_registration,
        use_te_act_func=args.use_te_act_func,
        act_func_fp8_input_store=args.act_func_fp8_input_store,
    )

    recipe = set_exp_logging_configs(
        recipe,
        "finetune",
        "vlm",
        "qwen25vl",
        args.tensorboard,
        args.wandb,
        args.wandb_prj_name,
        args.wandb_job_name,
    )

    # compute dtype configs
    if args.compute_dtype.lower() == "fp8":
        recipe.trainer.plugins = bf16_with_fp8_mixed()
        recipe.trainer.plugins.grad_reduce_in_fp32 = False

    recipe.trainer.strategy.tensor_model_parallel_size = tp_size
    recipe.trainer.strategy.pipeline_model_parallel_size = pp_size
    recipe.data.tokenizer = run.Config(
        get_nmt_tokenizer, library="null", model_name="NullTokenizer", vocab_size=152064
    )

    return recipe


if __name__ == "__main__":
    args = parse_cli_args().parse_args()
    args_sanity_check(args)

    kwargs = get_user_configs(args.gpu.lower(), "finetune", "qwen25vl", "7b", args)
    num_nodes, mbs, gbs, tp_size, pp_size, cp_size, vp_size, ep_size, _, enable_cuda_graphs = kwargs[:10]

    recipe = override_recipe_configs(
        args, num_nodes, mbs, gbs, tp_size, pp_size, cp_size, vp_size, ep_size, enable_cuda_graphs
    )

    exp_config = f"{num_nodes}nodes_tp{tp_size}_pp{pp_size}_cp{cp_size}_vp{vp_size}_{mbs}mbs_{gbs}gbs"
    exp_name = f"qwen25vl_7b_finetune_{args.compute_dtype}_{exp_config}"

    executor = slurm_executor(
        args.gpu.lower(),
        args.account,
        args.partition,
        args.log_dir,
        num_nodes,
        args.gpus_per_node,
        args.time_limit,
        args.container_image,
        custom_mounts=args.custom_mounts,
        custom_env_vars={},
        hf_token=args.hf_token,
        nemo_home=args.nemo_home,
        wandb_key=args.wandb_key,
    )

    plugins = [build_perf_env_plugin(args, pp_size=pp_size)]

    if args.enable_nsys:
        plugins.append(NsysPlugin(start_step=5, end_step=6))

    with run.Experiment(exp_name) as exp:
        exp.add(
            recipe,
            executor=executor,
            name=exp_name,
            plugins=plugins,
        )

        if not args.dryrun:
            exp.run(sequential=True, detach=args.detach)
        else:
            exp.dryrun()