File size: 5,785 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright (c) 2025, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import glob
import math
import os
from typing import List, Union


from filelock import FileLock
from omegaconf import ListConfig, OmegaConf


def count_files_for_tarred_pseudo_labeling(manifest_filepath: Union[str, ListConfig]) -> int:
    """
    Counts the total number of entries across multiple manifest files.
    Args:
        manifest_filepath (Union[str, ListConfig]): The file path to the manifest files.
    Returns:
        int: The total number of entries across all matching manifest files.
    """
    # Convert ListConfig to string if needed
    if isinstance(manifest_filepath, ListConfig):
        manifest_filepath = manifest_filepath[0]  # Use the first element if it's a list or ListConfig
    dir_path, filename = os.path.split(manifest_filepath)
    prefix = filename.split('_', 1)[0]
    number_of_files = 0
    for full_path in glob.glob(os.path.join(dir_path, f"{prefix}_[0-9]*.json")):
        with open(full_path, 'r') as f:
            number_of_files += len(f.readlines())
    return number_of_files


def count_files_for_pseudo_labeling(manifest_filepath: Union[str, list, ListConfig]) -> int:
    """
    Counts the number of entries in a single manifest file .
    Args:
        manifest_filepath (Union[str, list, ListConfig]): The file path to the manifest file.
    Returns:
        int: The total number of entries (lines) in the manifest file.
    """
    # Convert ListConfig to string if needed
    if isinstance(manifest_filepath, list) or isinstance(manifest_filepath, ListConfig):
        manifest_filepath = manifest_filepath[0]
    with open(manifest_filepath, 'r') as f:
        number_of_files = len(f.readlines())
    return number_of_files


def export_limit_predict_batches(inference_configs: List[str], p_cache: float, num_gpus: int) -> None:
    """
    Updates inference configuration files to set `limit_predict_batches`.
    This is done to force partial transcription of unlabeled dataset for dynamic update of PLs.

    Args:
        inference_configs (List[str]): A list of file paths to the inference configuration files.
        p_cache (float): A scaling factor for the cache to adjust the number of batches.
        num_gpus (int): The number of GPUs available for inference.

    Returns:
        None: The function modifies and saves the updated configuration files in-place.
    """
    for config_path in inference_configs:
        config = OmegaConf.load(config_path)
        tarred_audio_filepaths = config.predict_ds.get("tarred_audio_filepaths", None)
        manifest_filepaths = config.predict_ds.manifest_filepath

        if tarred_audio_filepaths:
            number_of_files = count_files_for_tarred_pseudo_labeling(manifest_filepaths)
        else:
            number_of_files = count_files_for_pseudo_labeling(manifest_filepaths)

        if hasattr(config.predict_ds, "batch_size"):
            batch_size = config.predict_ds.batch_size
            limit_predict_batches = math.ceil((number_of_files * p_cache) / (batch_size * num_gpus))
            OmegaConf.update(config, "trainer.limit_predict_batches", limit_predict_batches)
            OmegaConf.save(config, config_path)
        elif hasattr(config.predict_ds, "batch_duration"):
            batch_duration = config.predict_ds.batch_duration
            average_audio_len = 10
            limit_predict_batches = math.ceil(
                (number_of_files * average_audio_len * p_cache) / (batch_duration * num_gpus)
            )
            OmegaConf.update(config, "trainer.limit_predict_batches", limit_predict_batches)
            OmegaConf.save(config, config_path)
        else:
            batch_size = 32
            limit_predict_batches = math.ceil((number_of_files * p_cache) / (batch_size * num_gpus))
            OmegaConf.update(config, "trainer.limit_predict_batches", limit_predict_batches)
            OmegaConf.save(config, config_path)


def main():
    rank = int(os.environ.get("RANK", 0))  # Default to 0 if not set

    # Ensure only one process executes this block
    parser = argparse.ArgumentParser(description="Export limit_predict_batches as environment variables.")
    parser.add_argument(
        "--inference_configs",
        type=str,
        nargs='+',  # Accepts one or more values as a list
        required=True,
        help="Paths to one or more inference config YAML files.",
    )
    parser.add_argument("--p_cache", type=float, required=True, help="Pseudo-label cache fraction.")
    parser.add_argument("--num_gpus", type=int, required=True, help="Number of GPUs available.")

    args = parser.parse_args()
    lock_dir = os.path.dirname(args.inference_configs[0])
    lock_file = lock_dir + "/my_script.lock"
    # Code executed by all processes

    #     # Code executed by a single process
    with FileLock(lock_file):
        if rank == 0:
            export_limit_predict_batches(
                inference_configs=args.inference_configs, p_cache=args.p_cache, num_gpus=args.num_gpus
            )

    # Remove the lock file after the FileLock context is exited
    if os.path.exists(lock_file):
        os.remove(lock_file)


if __name__ == "__main__":
    main()