Spaces:
Runtime error
Runtime error
File size: 7,285 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Example:
python scripts/vlm/gemma3vl_generate.py --local_model_path="path/to/converted_nemo_checkpoint"
"""
import argparse
from pathlib import Path
import torch
import torch.distributed as dist
from megatron.core import parallel_state
from megatron.core.pipeline_parallel.schedules import get_forward_backward_func
import nemo.lightning as nl
from nemo.collections.common.tokenizers import AutoTokenizer
from nemo.collections.vlm import Gemma3VLModel
from nemo.collections.vlm.inference.base import _setup_trainer_and_restore_model
from nemo.lightning import io
from nemo.lightning.ckpt_utils import ckpt_to_context_subdir
from nemo.utils.get_rank import get_last_rank
class SingleBatchIterator:
def __init__(self, pixel_values, input_ids, position_ids):
self.batch = dict(
pixel_values=pixel_values,
input_ids=input_ids,
position_ids=position_ids,
)
self._yielded = False
def __iter__(self):
return self
def __next__(self):
if self._yielded:
raise StopIteration
self._yielded = True
return self.batch
def gemma3_forward_step(data_iterator, model, **kwargs) -> torch.Tensor:
batch = next(data_iterator)
forward_args = {
"input_ids": batch["input_ids"],
"position_ids": batch["position_ids"],
"pixel_values": batch.get("pixel_values", None),
"loss_mask": batch.get("loss_mask", None),
"labels": batch.get("labels", None),
}
def loss_func(x, **kwargs):
return x
return model(**forward_args), loss_func
def main(args) -> None:
# pylint: disable=C0115,C0116,C0301
strategy = nl.MegatronStrategy(
tensor_model_parallel_size=args.tp,
pipeline_model_parallel_size=args.pp,
sequence_parallel=args.tp > 1,
ckpt_include_optimizer=False,
ckpt_load_strictness="log_all",
pipeline_dtype=torch.bfloat16,
)
trainer = nl.Trainer(
devices=min(args.tp * args.pp, 8),
num_nodes=max(args.tp * args.pp // 8, 1),
accelerator="gpu",
strategy=strategy,
plugins=nl.MegatronMixedPrecision(precision="bf16-mixed"),
enable_checkpointing=False,
)
if args.local_model_path:
path = Path(args.local_model_path)
model: io.TrainerContext = io.load_context(path=ckpt_to_context_subdir(path), subpath="model")
_setup_trainer_and_restore_model(path=path, trainer=trainer, model=model)
else:
fabric = trainer.to_fabric()
model = fabric.import_model("hf://google/gemma-3-4b-it", Gemma3VLModel)
model = model.module.cuda()
model.eval()
from transformers import AutoProcessor
model_id = 'google/gemma-3-4b-it'
processor = AutoProcessor.from_pretrained(model_id)
gemma_tokenizer = AutoTokenizer(model_id)
hf_tokenizer = gemma_tokenizer.tokenizer
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG",
},
{"type": "text", "text": "What animal is on the candy?"},
],
},
]
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
)
input_ids = inputs["input_ids"].cuda()
# add additional dim to (B, N, C, H, W)
pixel_values = inputs["pixel_values"].cuda().unsqueeze(0).to(dtype=torch.bfloat16)
position_ids = (
torch.arange(input_ids.size(1), dtype=torch.long, device=input_ids.device).unsqueeze(0).expand_as(input_ids)
)
generated_ids = input_ids.clone()
stop_tokens = [1, 126]
# Greedy generation loop
for step in range(20):
with torch.no_grad():
if torch.distributed.get_rank() == 0:
print(step)
fwd_bwd_function = get_forward_backward_func()
iterator = SingleBatchIterator(pixel_values, input_ids, position_ids)
output = fwd_bwd_function(
forward_step_func=gemma3_forward_step,
data_iterator=iterator,
model=model,
num_microbatches=1,
forward_only=True,
seq_length=input_ids.size(1),
micro_batch_size=1,
collect_non_loss_data=True,
)
if isinstance(output, list) and len(output) > 0:
output = output[0]
if parallel_state.is_pipeline_last_stage():
world_size = parallel_state.get_tensor_model_parallel_world_size()
gathered_tensors = [torch.zeros_like(output) for _ in range(world_size)]
# All-gather operation
dist.all_gather(gathered_tensors, output, group=parallel_state.get_tensor_model_parallel_group())
# Concatenate along last dimension (dim=2)
output = torch.cat(gathered_tensors, dim=2)
next_token_ids = torch.argmax(output[:, -1], dim=-1, keepdim=True)
else:
next_token_ids = torch.ones((1, 1), device=generated_ids.device, dtype=generated_ids.dtype)
torch.distributed.broadcast(next_token_ids, get_last_rank())
generated_ids = torch.cat([generated_ids, next_token_ids], dim=-1)
input_ids = generated_ids
position_ids = (
torch.arange(input_ids.size(1), dtype=torch.long, device=input_ids.device)
.unsqueeze(0)
.expand_as(input_ids)
)
# If the generated token is the end of sequence token, stop generating
if next_token_ids.item() in stop_tokens:
break
generated_texts = hf_tokenizer.decode(list(generated_ids[0]))
if torch.distributed.get_rank() == 0:
print("======== GENERATED TEXT OUTPUT ========")
print(f"{generated_texts}")
print("=======================================")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Gemma3 Multimodal Inference")
parser.add_argument(
"--local_model_path",
type=str,
default=None,
help="Local path to the model if not loading from Hugging Face.",
)
parser.add_argument('--tp', default=1)
parser.add_argument('--pp', default=1)
args = parser.parse_args()
main(args)
|