File size: 9,192 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# Copyright (c) 2025, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Example:
  torchrun --nproc_per_node=8 scripts/vlm/llava_next_finetune.py \
  --devices=8 --tp=4 --data_type=mock
  
  torchrun --nproc_per_node=8 scripts/vlm/llava_next_finetune.py \
  --devices=8 --tp=4 --data_type=energon --data_path='' \ 
  --language_model_path=/root/.cache/nemo/models/lmsys/vicuna-7b-v1.5
"""

import argparse

import torch
from lightning.pytorch.loggers import WandbLogger
from megatron.core.optimizer import OptimizerConfig

from nemo import lightning as nl
from nemo.collections import llm, vlm
from nemo.lightning.pytorch.optim import CosineAnnealingScheduler
from nemo.lightning.pytorch.optim.megatron import MegatronOptimizerModule
from nemo.utils.exp_manager import TimingCallback


def main(args):
    # pylint: disable=C0115,C0116

    # Global and micro batch sizes
    gbs = args.gbs
    mbs = args.mbs
    max_steps = args.max_steps

    decoder_seq_length = 4096

    if args.data_type == "energon":
        from transformers import AutoProcessor

        from nemo.collections.common.tokenizers.huggingface.auto_tokenizer import AutoTokenizer
        from nemo.collections.multimodal.data.energon import EnergonMultiModalDataModule
        from nemo.collections.multimodal.data.energon.config import MultiModalSampleConfig
        from nemo.collections.vlm import LlavaNextTaskEncoder

        data_path = args.data_path
        model_id = "llava-hf/llava-v1.6-vicuna-7b-hf"
        processor = AutoProcessor.from_pretrained(model_id)
        tokenizer = AutoTokenizer(model_id)

        multimodal_sample_config = MultiModalSampleConfig()

        task_encoder = LlavaNextTaskEncoder(
            tokenizer=tokenizer.tokenizer,
            image_processor=processor.image_processor,
            multimodal_sample_config=multimodal_sample_config,
            packed_sequence=args.use_packed_sequence,
            packed_sequence_size=decoder_seq_length,
        )
        data = EnergonMultiModalDataModule(
            path=data_path,
            tokenizer=tokenizer,
            image_processor=processor.image_processor,
            num_workers=32,
            micro_batch_size=mbs,
            global_batch_size=gbs,
            multimodal_sample_config=multimodal_sample_config,
            task_encoder=task_encoder,
            packing_buffer_size=200 if args.use_packed_sequence else None,
            virtual_epoch_length=1000,
        )

    elif args.data_type == "mock":
        data = vlm.LlavaNextMockDataModule(
            seq_length=decoder_seq_length,
            global_batch_size=gbs,
            micro_batch_size=mbs,
            tokenizer=None,
            image_processor=None,
            num_workers=4,
        )
    else:
        raise ValueError(f"Data type {args.data_type} not supported")

    # Submodules configurations
    language_transformer_config = llm.Llama2Config7B(
        seq_length=decoder_seq_length,
    )
    vision_transformer_config = vlm.HFCLIPVisionConfig(pretrained_model_name_or_path=args.vision_encoder_model_path)
    vision_projection_config = vlm.MultimodalProjectorConfig(
        projector_type=args.projector_type,
        input_size=vision_transformer_config.hidden_size,
        hidden_size=language_transformer_config.hidden_size,
        ffn_hidden_size=language_transformer_config.hidden_size,
    )

    # Llava Next model configuration
    llava_next_config = vlm.LlavaNextConfig(
        language_transformer_config=language_transformer_config,
        vision_transformer_config=vision_transformer_config,
        vision_projection_config=vision_projection_config,
        language_model_from_pretrained=args.language_model_path,
        freeze_language_model=False,
        freeze_vision_model=True,
    )

    model = vlm.LlavaNextModel(llava_next_config, tokenizer=data.tokenizer)

    # Training strategy setup
    strategy = nl.MegatronStrategy(
        tensor_model_parallel_size=args.tp_size,
        pipeline_model_parallel_size=args.pp_size,
        encoder_pipeline_model_parallel_size=args.encoder_pp_size,
        context_parallel_size=args.cp_size,
        pipeline_dtype=torch.bfloat16,
        sequence_parallel=False,  # True if args.tp_size > 1 else False,
    )

    # Checkpoint callback setup
    checkpoint_callback = nl.ModelCheckpoint(
        save_last=True,
        monitor="reduced_train_loss",
        save_top_k=2,
        every_n_train_steps=1000,
        dirpath=args.log_dir,
    )

    # Trainer setup
    trainer = nl.Trainer(
        num_nodes=args.num_nodes,
        devices=args.devices,
        max_steps=max_steps,
        accelerator="gpu",
        strategy=strategy,
        plugins=nl.MegatronMixedPrecision(precision="bf16-mixed"),
        callbacks=[checkpoint_callback, TimingCallback()],
        val_check_interval=500,
        limit_val_batches=gbs,
        log_every_n_steps=1,
        num_sanity_val_steps=0,
    )

    # Logger setup
    nemo_logger = nl.NeMoLogger(
        log_dir=args.log_dir,
        name=args.name,
        wandb=WandbLogger(project=args.wandb_project, name=args.name) if args.wandb_project is not None else None,
    )

    # Auto resume setup
    resume = nl.AutoResume(
        resume_if_exists=True,
        resume_ignore_no_checkpoint=True,
        resume_from_directory=args.log_dir,
        restore_config=nl.RestoreConfig(path=args.restore_path) if args.restore_path is not None else None,
    )

    # Optimizer and scheduler setup
    opt_config = OptimizerConfig(
        optimizer='adam',
        lr=args.lr,
        adam_beta1=0.9,
        adam_beta2=0.95,
        use_distributed_optimizer=True,
        bf16=True,
    )
    sched = CosineAnnealingScheduler(
        max_steps=trainer.max_steps,
        warmup_steps=150,
        constant_steps=0,
        min_lr=2.0e-07,
    )
    opt = MegatronOptimizerModule(opt_config, sched)

    # PEFT setup
    if args.peft == 'lora':
        peft = vlm.peft.LoRA(
            target_modules=[
                "linear_qkv",
                "linear_proj",
                "linear_fc1",
                "linear_fc2",
            ]
        )
    else:
        peft = None

    llm.finetune(
        model=model,
        data=data,
        trainer=trainer,
        peft=peft,
        log=nemo_logger,
        optim=opt,
        resume=resume,
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Llava Next Finetuning Script")

    # Argument parsing
    parser.add_argument("--data_type", type=str, required=False, default="mock", help="mock | energon")
    parser.add_argument("--data_path", type=str, required=False, default=None, help="Path to the dataset JSON file")
    parser.add_argument(
        "--log_dir", type=str, required=False, default="/results", help="Directory for logging and checkpoints"
    )
    parser.add_argument(
        "--language_model_path", type=str, required=False, default=None, help="Path to the pretrained language model"
    )
    parser.add_argument(
        "--vision_encoder_model_path",
        type=str,
        required=False,
        default="openai/clip-vit-large-patch14-336",
        help="Path to the pretrained vision encoder model",
    )
    parser.add_argument(
        "--restore_path", type=str, required=False, default=None, help="Path to restore model from checkpoint"
    )
    parser.add_argument("--devices", type=int, required=False, default=1)
    parser.add_argument("--num_nodes", type=int, required=False, default=1)
    parser.add_argument("--max_steps", type=int, required=False, default=5190)
    parser.add_argument("--tp_size", type=int, required=False, default=4)
    parser.add_argument("--pp_size", type=int, required=False, default=1)
    parser.add_argument("--cp_size", type=int, required=False, default=1)
    parser.add_argument("--encoder_pp_size", type=int, required=False, default=0)
    parser.add_argument("--projector_type", type=str, required=False, default="mlp2x_gelu")
    parser.add_argument("--name", type=str, required=False, default="llava_next_finetune")
    parser.add_argument("--peft", type=str, default='none', help="none | lora")
    parser.add_argument("--wandb_project", type=str, required=False, default=None)
    parser.add_argument("--gbs", type=int, required=False, default=64, help="Global batch size")
    parser.add_argument("--mbs", type=int, required=False, default=4, help="Micro batch size")
    parser.add_argument("--lr", type=float, required=False, default=2.0e-05, help="Learning rate")
    parser.add_argument("--use_packed_sequence", action="store_true")

    args = parser.parse_args()
    main(args)